Zasada abstrakcji

Z Wikipedii, wolnej encyklopedii
Przejdź do nawigacji Przejdź do wyszukiwania

Zasada abstrakcjitwierdzenie matematyczne mówiące, że dowolnemu rozbiciu zbioru odpowiada pewna relacja równoważności, a każda relacja równoważności ustanawia pewne rozbicie zbioru.

Twierdzenie to sformalizowana wypowiedź sądu, stosowana we wszystkich naukach ścisłych, składająca się z dwóch zbiorów zdań, które łączy relacja implikacji. Pierwszy zbiór zdań określa ściśle warunki dla których dane twierdzenie jest spełnione i nazywa się założeniem twierdzenia, a drugi zbiór zdań jest właściwym sądem, będącym istotną treścią wypowiadanego twierdzenia i zwany jest tezą twierdzenia.Zbiór pusty - zbiór, który nie zawiera żadnych elementów. W teorii mnogości ZF, będącej najpopularniejszą aksjomatyką współczesnej matematyki, istnienie zbioru pustego postuluje aksjomat zbioru pustego, natomiast aksjomat ekstensjonalności gwarantuje jego jedyność. Zbiór pusty oznaczany jest zwykle symbolami ∅ {displaystyle varnothing } , ∅ {displaystyle emptyset } , ∅ bądź {}.

Twierdzenie[ | edytuj kod]

Jeśli jest zbiorem niepustym i jest relacją równoważnościową na tym zbiorze, to rodzina podzbiorów określona następująco:

Bolesław Gleichgewicht (ur. 30 kwietnia 1919 w Warszawie) – doktor nauk matematycznych, zainteresowany różnymi aspektami algebry oraz dydaktyki matematyki.Matematyka (z łac. mathematicus, od gr. μαθηματικός mathēmatikós, od μαθηματ-, μαθημα mathēmat-, mathēma, „nauka, lekcja, poznanie”, od μανθάνειν manthánein, „uczyć się, dowiedzieć”; prawd. spokr. z goc. mundon, „baczyć, uważać”) – nauka dostarczająca narzędzi do otrzymywania ścisłych wniosków z przyjętych założeń, zatem dotycząca prawidłowości rozumowania. Ponieważ ścisłe założenia mogą dotyczyć najróżniejszych dziedzin myśli ludzkiej, a muszą być czynione w naukach ścisłych, technice a nawet w naukach humanistycznych, zakres matematyki jest szeroki i stale się powiększa.

jest rozbiciem zbioru .

Twierdzenie to nazywane jest zasadą abstrakcji, a zbiory rodziny klasami abstrakcji relacji .

Dowód[ | edytuj kod]

Ponieważ więc każdy element zbioru należy do pewnego zbioru rodziny i żaden z tych zbiorów nie jest pusty. Jeśli to istnieje skąd Zatem czyli .

Twierdzenie odwrotne[ | edytuj kod]

Jeśli jest zbiorem niepustym i jest jego rozbiciem, to relacja określona w zbiorze wzorem:

jest równoważnościowa.

Dowód[ | edytuj kod]

Jeśli to ponieważ to dla pewnego a stąd wynika, że

Jeśli to Wynika to z oczywistej implikacji:

Niech Istnieją dla których Jednak w tym wypadku ponieważ skąd a więc .

Przypisy[ | edytuj kod]

  1. Wojciech Guzicki, Piotr Zakrzewski: Wykłady ze wstępu do matematyki. Wprowadzenie do teorii mnogości., Warszawa: Wydawnictwo Naukowe PWN, 2005.
  2. Bolesław Gleichgewicht, Algebra, Oficyna Wydawnicza GiS, Wrocław 2004, ​ISBN 978-83-89020-35-2​; s. 271.
  3. Bolesław Gleichgewicht, Algebra, Oficyna Wydawnicza GiS, Wrocław 2004, ​ISBN 978-83-89020-35-2​; s. 271 – dowód.
  4. Bolesław Gleichgewicht, Algebra, Oficyna Wydawnicza GiS, Wrocław 2004, ​ISBN 978-83-89020-35-2​; s. 270.
  5. Bolesław Gleichgewicht, Algebra, Oficyna Wydawnicza GiS, Wrocław 2004, ​ISBN 978-83-89020-35-2​; s. 270-271 – Dowód.




Reklama