Twierdzenie spektralne

Z Wikipedii, wolnej encyklopedii
Przejdź do nawigacji Przejdź do wyszukiwania

Twierdzenie spektralne – wspólna nazwa twierdzeń w algebrze liniowej i analizie funkcjonalnej uogólniających twierdzenie teorii macierzy mówiące, że

Miara wektorowa – addytywna funkcja zbiorów określona na ciele zbiorów o wartościach w przestrzeni unormowanej. Miara wektorowa nie jest miarą. Dla miar wektorowych, podobnie jak dla miar, definiuje się pojęcie całki.Ideał maksymalny – w teorii pierścieni ideał, który jest maksymalny (względem zawierania zbiorów) wśród wszystkich ideałów właściwych danego pierścienia; innymi słowy jest to taki ideał właściwy, który nie zawiera się w żadnym innym ideale danego pierścienia.
Każda macierz normalna może zostać zdiagonalizowana (przy pomocy odpowiedniej macierzy przejścia).

Ściślej, jeżeli traktujemy macierz normalną jako macierz pewnego endomorfizmu przestrzeni euklidesowej, to można znaleźć bazę ortonormalną tej przestrzeni, w której macierz ta będzie diagonalna. Twierdzenia spektralne uogólniają ten fakt na przestrzenie nieskończenie wymiarowe z punktu widzenia algebry i analizy funkcjonalnej.

Serge Lang (ur. 19 maja 1927 w Paryżu, zm. 12 września 2005 w Berkeley) – amerykański matematyk francuskiego pochodzenia. Znany ze swoich osiągnięć w teorii liczb. Jest autorem klasycznego podręcznika akademickiego Algebra, przetłumaczonego także na język polski. Był członkiem grupy Nicolas Bourbaki.Mechanika kwantowa (teoria kwantów) – teoria praw ruchu obiektów świata mikroskopowego. Poszerza zakres mechaniki na odległości czasoprzestrzenne i energie, dla których przewidywania mechaniki klasycznej nie sprawdzały się. Opisuje przede wszystkim obiekty o bardzo małych masach i rozmiarach - np. atom, cząstki elementarne itp. Jej granicą dla średnich rozmiarów lub średnich energii czy pędów jest mechanika klasyczna.

Operatory samosprzężone[ | edytuj kod]

Przypadek rzeczywisty[ | edytuj kod]

Niech będzie przestrzenią ortogonalną nad ciałem liczb rzeczywistych z dodatnio określonym funkcjonałem dwuliniowym. Jeśli jest endomorfizmem samosprzężonym, to istnieje baza ortogonalna przestrzeni złożona z wektorów własnych endomorfizmu

Macierz przekształcenia liniowego – w algebrze liniowej macierz będąca wygodnym zapisem we współrzędnych przekształcenia liniowego dwóch skończenie wymiarowych przestrzeni liniowych nad tym samym ciałem z ustalonymi bazami. Dzięki temu, że mnożeniu macierzy oraz domnażaniu wektorów odpowiada składanie przekształceń i obliczanie wartości przekształcenia na wspomnianym wektorze, teoria macierzy staje się wygodnym językiem opisu przekształceń (w tym endomorfizmów) liniowych wyżej opisanych przestrzeni; jeśli nie wskazano żadnych baz, to każdą macierz o elementach z ciała można traktować jako przekształcenie liniowe między dwoma przestrzeniami współrzędnych.Przestrzeń Hilberta – w analizie funkcjonalnej rzeczywista lub zespolona przestrzeń unitarna (tj. przestrzeń liniowa nad ciałem liczb rzeczywistych lub zespolonych z abstrakcyjnym iloczynem skalarnym), zupełna ze względu na indukowaną (poprzez normę) z iloczynu skalarnego tej przestrzeni metrykę. Jako unormowana i zupełna, każda przestrzeń Hilberta jest przestrzenią Banacha, a przez to przestrzenią Frécheta, a stąd lokalnie wypukłą przestrzenią liniowo-topologiczną. Przestrzenie te noszą nazwisko Davida Hilberta, który wprowadził je pod koniec XIX wieku; są one podstawowym narzędziem wykorzystywanym w wielu dziedzinach fizyki, m.in. w mechanice kwantowej (np. przestrzeń Foka nad przestrzenią Hilberta).

Przypadek zespolony[ | edytuj kod]

Niech będzie przestrzenią liniową skończonego wymiaru nad ciałem liczb zespolonych z formą hermitowską dodatnio określoną. Jeśli jest operatorem samosprzężonym, to istnieje baza ortogonalna przestrzeni złożona z wektorów własnych operatora

Wektory i wartości własne – wielkości opisujące endomorfizm danej przestrzeni liniowej; wektor własny przekształcenia można rozumieć jako wektor, którego kierunek nie ulega zmianie po przekształceniu go endomorfizmem; wartość własna odpowiadająca temu wektorowi to skala podobieństwa tych wektorów.Twierdzenie Gelfanda-Najmarka - twierdzenie mówiące, iż każda przemienna C*-algebra A jest (izometrycznie) *-izomorficzna z algebrą C0(K) funkcji ciągłych znikających w nieskończoności na lokalnie zwartej przestrzeni Hausdorffa K. W przypadku, gdy A ma jedynkę, przestrzeń K jest zwarta.

Wniosek[ | edytuj kod]

Przy założeniach powyższych twierdzeń: Istnieje baza ortonormalna przestrzeni złożona z wektorów własnych operatora Wystarczy wektory bazy ortogonalnej unormować (tzn. każdy wektor podzielić przez jego normę).

Podstrony: 1 [2] [3]




Warto wiedzieć że... beta

MathWorld – encyklopedia matematyczna online, sponsorowana przez Wolfram Research, twórcę i producenta programu Mathematica; współsponsorem jest National Science Foundation (National Science Digital Library).
Przestrzeń liniowa lub wektorowa – w matematyce zbiór obiektów (nazywanych "wektorami"), które mogą być, nieformalnie rzecz ujmując, skalowane i dodawane. Formalnie jest to zbiór z określonymi dwoma działaniami: dodawaniem elementów tej przestrzeni (wektorów) i mnożeniem przez elementy ustalonego ciała, które związane są ze sobą poniższymi aksjomatami. Przestrzenie liniowe to podstawowy obiekt badań algebry liniowej i analizy funkcjonalnej. Znajdują zastosowanie niemal we wszystkich gałęziach matematyki, naukach ścisłych i inżynierii.
Forma dwuliniowa albo funkcjonał dwuliniowy – w algebrze liniowej przekształcenie dwuliniowe danej przestrzeni liniowej w ciało jej skalarów, czyli dwuargumentowy funkcjonał, który jest liniowy ze względu na oba parametry. Studiowanie form dwuliniowych sprowadza się do badania wyniku utożsamienia danej przestrzeni liniowej z przestrzenią dualną do niej; różne utożsamienia wprowadzają różne geometrie na rozpatrywanej przestrzeni liniowej: w szczególności przestrzenie liniowe z wyróżnioną dodatnio określoną, symetryczną formą dwuliniową tworzą przestrzeń unitarną (tzn. przestrzeń liniową z wyróżnionym iloczynem skalarnym).
Izometria (gr. isos – równy, métron – miara; także przekształcenie izometryczne, izomorfizm izometryczny) – funkcja zachowująca odległości między punktami przestrzeni metrycznej. W geometrii figury między którymi istnieje izometria (są izometryczne) nazywne są przystającymi.
Hermitowska miara spektralna (albo hermitowski rozkład jedynki) - w analizie funkcjonalnej, dokładniej w analizie spektralnej, przeliczalnie addytywna miara wektorowa, określona na σ-ciele zbiorów borelowskich pewnej przestrzeni topologicznej o wartościach w przestrzeni operatorów liniowych i ciągłych pewnej przestrzeni Hilberta, spełniająca określone warunki. Hermitowskie miary spektralne pojawiają się w sformułowaniu twierdzenia spektralnego.
Do wielu zastosowań (zarówno numerycznych jak i teoretycznych) warto przedstawić daną macierz w postaci iloczynu kilku macierzy o określonych własnościach. Niektóre z poniższych rozkładów uogólniają się na operatory liniowe.
Baza – pojęcie będące przeniesieniem oraz rozwinięciem idei układu współrzędnych kartezjańskich w przestrzeniach euklidesowych na abstrakcyjne przestrzenie liniowe.

Reklama