Twierdzenie Noether

Z Wikipedii, wolnej encyklopedii
Przejdź do nawigacji Przejdź do wyszukiwania
Pierwsza strona artykułu „Invariante Variationsprobleme” (1918), w którym Noether dowiodła swojego twierdzenia.

Twierdzenie Noether – twierdzenie udowodnione przez Emmy Noether, dotyczące związku zasad zachowania z symetriami ciągłymi. Ma fundamentalne znaczenie w fizyce.

Mechanika klasyczna – dział mechaniki w fizyce opisujący ruch ciał (kinematyka), wpływ oddziaływań na ruch ciał (dynamika) oraz badaniem równowagi ciał materialnych (statyka). Mechanika klasyczna oparta jest na prawach ruchu (zasadach dynamiki) sformułowanych przez Isaaca Newtona, dlatego też jest ona nazywana „mechaniką Newtona” (Principia). Mechanika klasyczna wyjaśnia poprawnie zachowanie się większości ciał w naszym otoczeniu.Symetria unitarna – rodzaj symetrii związany z grupą macierzy unitarnych. Grupę macierzy unitarnych o rozmiarze n × n {displaystyle n imes n} nazywamy grupą unitarną rzędu n {displaystyle n} i oznaczamy symbolem U ( n ) {displaystyle mathrm {U} (n),} .

Symetrie ciągłe, grupy symetrii, generatory, grupy Liego[ | edytuj kod]

(1) Symetrie ciągłe to np. obroty, translacje.

(2) Symetrie tworzą grupę.

Działanie – podstawowe pojęcie mechaniki teoretycznej. Wyraża się w jednostkach iloczynu energii i czasu, bądź pędu i drogi. Działanie to całka lagranżjanu układu między dwoma stanami:Grupa – jedna ze struktur algebraicznych: zbiór niepusty, na którym określono pewne łączne działanie dwuargumentowe wewnętrzne, dla którego istnieje element odwrotny do każdego elementu oraz element neutralny. Można powiedzieć, że grupą jest monoid, w którym każdy element ma element odwrotny. Dział matematyki badający własności grup nazywa się teorią grup.

(3) Każda symetria jest opisana jednym parametrem i jednym generatorem.

(4) Generatory grupy symetrii tworzą grupę, tzw. grupę Liego.

Spośród grup symetrii ważną rolę w fizyce odgrywają:

  • grupa obrotów w przestrzeni euklidesowej SO(n)
  • grupa translacji w przestrzeni euklidesowej
  • grupa transformacji ortogonalnych w przestrzeni euklidesowej O(n)
  • grupa Lorentza obrotów w przestrzeni pseudoeuklidesowej
  • grupa Poincarégo
  • grupa przekształceń unitarnych U(n) oraz SU(n).


  • Podstrony: 1 [2] [3] [4]




    Warto wiedzieć że... beta

    Czas – skalarna (w klasycznym ujęciu) wielkość fizyczna określająca kolejność zdarzeń oraz odstępy między zdarzeniami zachodzącymi w tym samym miejscu. Pojęcie to było również przedmiotem rozważań filozoficznych.
    Czasoprzestrzeń Minkowskiego – przestrzeń liniowa w fizyce i matematyce, która łącząc czas z przestrzenią trówymiarową umożliwia formalny zapis równań szczególnej teorii względności Einsteina. Nazwę zawdzięcza niemieckiemu matematykowi Hermannowi Minkowskiemu, który opisał ją w 1907.
    Amalie Emmy Noether (ur. 23 marca 1882 w Erlangen – zm. 14 kwietnia 1935 w Bryn Mawr, Pensylwania, Stany Zjednoczone) - niemiecka matematyczka i fizyczka, znana głównie dzięki osiągnięciom w teorii pierścieni i rozwinięciu nowej gałęzi matematyki – algebry abstrakcyjnej.
    W matematyce, grupa Liego to grupa, która jest zarazem gładką rozmaitością. Można na nią patrzeć jako na zbiór z dodatkowymi strukturami rozmaitości i grupy. Przykładem grupy Liego jest grupa obrotów przestrzeni trójwymiarowej. Grupy Liego są często spotykane w analizie matematycznej, fizyce i geometrii. Zostały po raz pierwszy wprowadzone przez Sophusa Liego w 1870 roku do badania równań różniczkowych.
    W fizyce i matematyce grupa Poincarégo jest to grupa izometrii czasoprzestrzeni Minkowskiego. Jest to 10-wymiarowa grupa Liego nazwana na cześć jednego z twórców matematycznych podstaw teorii względności. Abelowa grupa translacji w czasoprzestrzeni jest podgrupą normalną, podczas gdy grupa Lorentza jest podgrupą, czyli pełna grupa Poincaré jest iloczynem półprostym translacji i transformacji Lorentza. Innym sposobem wyprowadzenia grupy Poincaré jest rozszerzenie grupy Lorentza za pomocą jej reprezentacji wektorowej. Zgodnie z programem z Erlangen, geometria czasoprzestrzeni Minkowskiego jest zdefiniowana przez grupę Poincarégo. Wedle tego programu przestrzeń Minkowskiego jest przestrzenią jednorodną dla grupy Poincarégo.
    Energia gr. ενεργεια (energeia) – skalarna wielkość fizyczna charakteryzująca stan układu fizycznego (materii) jako jego zdolność do wykonania pracy.
    Spin – moment własny pędu cząstki w układzie, w którym nie wykonuje ruchu postępowego. Własny oznacza tu taki, który nie wynika z ruchu danej cząstki względem innych cząstek, lecz tylko z samej natury tej cząstki. Każdy rodzaj cząstek elementarnych ma odpowiedni dla siebie spin. Cząstki będące konglomeratami cząstek elementarnych (np. jądra atomów) mają również swój spin będący sumą wektorową spinów wchodzących w skład jego cząstek elementarnych.

    Reklama