Twierdzenie Banacha-Steinhausa

Z Wikipedii, wolnej encyklopedii
Przejdź do nawigacji Przejdź do wyszukiwania

Twierdzenie Banacha-Steinhausa (zasada jednostajnej ograniczoności) – twierdzenie analizy funkcjonalnej mówiące, w swym klasycznym sformułowaniu, że granica punktowa ciągu operatorów liniowych i jednakowo ciągłych między przestrzeniami Banacha jest ciągłym operatorem liniowym. Twierdzenie Banacha-Steinhausa można sformułować ogólniej, aby uwypuklić istotność założeń wersji klasycznej.

Ciąg – w matematyce pojęcie oddające intuicję ponumerowania, czy też uporządkowania elementów zbioru. W zależności od rodzaju elementów zbioru stosuje się różne nazwy: w przypadku liczb mówi się o ciągach liczbowych, bądź bardziej precyzyjnie, np. w przypadku zbioru liczb całkowitych, rzeczywistych czy zespolonych, ciąg nazywa się wtedy odpowiednio ciągiem całkowitoliczbowym, rzeczywistym i zespolonym. Jeśli elementami zbioru są funkcje, to ciąg nazywa się ciągiem funkcyjnym. Ciąg powstały poprzez wybranie elementów innego ciągu nazywa się podciągiem.Przestrzeń liniowo-topologiczna – przestrzeń liniowa, w której istnieje taka topologia (dla której dodatkowo zakłada się, że każdy punkt tej przestrzeni jest zbiorem domkniętym, innymi słowy przestrzeń spełnia pierwszy aksjomat oddzielania), że działania dodawania wektorów i mnożenia przez skalar są ciągłe. Można udowodnić, że każda przestrzeń liniowo-topologiczna jest przestrzenią Hausdorffa, a nawet jest przestrzenią regularną. Grupa addytywna przestrzeni liniowo-topologicznej jest grupą topologiczną. Każda przestrzeń unormowana (a więc np. dowolna przestrzeń Banacha czy Hilberta) jest przestrzenią liniowo-topologiczną.

Pierwszy dowód twierdzenia przedstawili w 1927 roku Stefan Banach i Hugo Steinhaus.

Jednakowa ciągłość[ | edytuj kod]

Dalej i oznaczać będą ustalone przestrzenie liniowo-topologiczne. Rodzinę przekształceń liniowych przestrzeni w przestrzeń nazywa się jednakowo ciągłą, gdy dla każdego otoczenia zera istnieje takie otoczenie zera że

Stefan Banach (ur. 30 marca 1892 w Krakowie, zm. 31 sierpnia 1945 we Lwowie) – polski matematyk, jeden z przedstawicieli lwowskiej szkoły matematycznej.Przestrzeń Banacha – przestrzeń unormowana X (z normą ||·||), w której metryka wyznaczona przez normę, tj. metryka d dana wzorem

dla każdego W przypadku gdy i przestrzeniami unormowanymi, to rodzina jest jednakowo ciągła wtedy i tylko wtedy, gdy

Operator liniowy ograniczony T to taki operator liniowy pomiędzy unormowanymi przestrzeniami X i Y, że istnieje pewna liczba nieujemna C, która dla każdego x należącego do X spełniaWalter Rudin (ur. 2 maja 1921 w Wiedniu, zm. 20 maja 2010) – amerykański matematyk związany z Uniwersytetem Wisconsin–Madison.
Przestrzeń unormowana – przestrzeń liniowa, w której określono pojęcie normy będące bezpośrednim uogólnieniem pojęcia długości (modułu) wektora w przestrzeni euklidesowej.Analiza funkcjonalna – dział analizy matematycznej zajmujący się głównie badaniem własności przestrzeni funkcyjnych. Rozwinął się w trakcie studiów nad odwzorowaniami zwanymi transformacjami lub operatorami (przede wszystkim nad transformacją Fouriera) oraz równaniami różniczkowymi i całkowymi.


Podstrony: 1 [2] [3]




Warto wiedzieć że... beta

Słaba topologia – alternatywna (w stosunku do wyjściowej) topologia na danej przestrzeni liniowo-topologicznej, będąca uogólnieniem idei zbieżności po współrzędnych (w przypadku przestrzeni skończenie wymiarowych słaba topologia pokrywa się z wyjściową topologią).
Wydawnictwo Naukowe PWN SA – wydawnictwo z siedzibą w Warszawie, założone w 1951, w obecnej formie prawnej działające od 1997. Wydawnictwo Naukowe PWN SA stanowi jednostkę dominującą Grupy kapitałowej PWN, w skład której wchodzi kilkanaście przedsiębiorstw, głównie wydawnictw.
W topologii zbiór nazywamy zbiorem pierwszej kategorii (czasami zbiorem mizernym), jeżeli można go przedstawić w postaci przeliczalnej sumy zbiorów nigdziegęstych.
Hugo Dyonizy Steinhaus (ur. 14 stycznia 1887 w Jaśle, zm. 25 lutego 1972 we Wrocławiu) – polski matematyk żydowskiego pochodzenia, profesor Uniwersytetu Jana Kazimierza, przedstawiciel lwowskiej szkoły matematycznej; aforysta.
Przestrzeń zupełna – przestrzeń metryczna, dla której każdy określony na niej ciąg Cauchy’ego ma granicę należącą do tej przestrzeni.
Fundamenta Mathematicae” – czasopismo matematyczne założone w 1920 w Warszawie przez polskich matematyków Zygmunta Janiszewskiego, Stefana Mazurkiewicza i Wacława Sierpińskiego, członków warszawskiej szkoły matematycznej.

Reklama