Twierdzenie Abela-Ruffiniego

Z Wikipedii, wolnej encyklopedii
Przejdź do nawigacji Przejdź do wyszukiwania

Twierdzenie Abela-Ruffiniego – głosi, że pierwiastki równania algebraicznego stopnia wyższego niż 4 nie dają się wyrazić w ogólnej postaci za pomocą czterech działań algebraicznych i pierwiastkowania poprzez współczynniki równania w skończonej liczbie kroków (czyli poprzez tak zwane pierwiastniki).

Grupa Galois – grupa związana z określonym rodzajem rozszerzenia ciała. Badanie rozszerzeń ciał (i wielomianów je produkujących) za pomocą grup Galois nazywa się teorią Galois, której nazwa pochodzi od nazwiska Évariste’a Galois, który pierwszy zastosował wspomnianą metodę. Metoda Newtona (zwana również metodą Newtona-Raphsona lub metodą stycznych) – iteracyjny algorytm wyznaczania przybliżonej wartości pierwiastka funkcji.

Mówiąc krótko, nie istnieją ogólne wzory na rozwiązania takiego równania.

Twierdzenie Abela-Ruffiniego nie stwierdza, że równanie stopnia wyższego niż 4 nie ma rozwiązań, a jedynie, że nie ma ogólnej metody na dokładne wyrażenie rozwiązań (każde równanie algebraiczne o współczynnikach zespolonych ma co najmniej jedno rozwiązanie zespolone – zob. Zasadnicze twierdzenie algebry).

Równanie sześcienne lub trzeciego stopnia – równanie algebraiczne postaci a x 3 + b x 2 + c x + d = 0 , {displaystyle ax^{3}+bx^{2}+cx+d=0,} gdzie a ≠ 0. {displaystyle a eq 0.} Każde równanie sześcienne o współczynnikach rzeczywistych ma przynajmniej jeden pierwiastek rzeczywisty.<|||||||||| |||||||||| |||||||||| |||||||||| |||||||||| |||||||||| |||||||||| |||||||||| |||||||||| |||||||||| - |||||||||| |||||||||| ||||||||||>

Na przykład rozwiązania równania kwadratowego postaci dla wyrażają się wzorami:

Równanie algebraiczne – równanie w postaci W(x) = 0, gdzie W(x) jest wielomianem stopnia n jednej lub wielu zmiennych (n ≥ 0). Więc równanie algebraiczne jednej zmiennej to równanie w postaciJoseph Louis Lagrange, wł. Giuseppe Lodovico (Luigi) Lagrangia (ur. 25 stycznia 1736 w Turynie, zm. 10 kwietnia 1813 w Paryżu) – matematyk i astronom pochodzenia włoskiego, pracujący we Francji i przez dwadzieścia lat w Berlinie dla króla pruskiego Fryderyka II.

Analogiczne, choć bardziej złożone, wzory można podać dla równania stopnia 3 i stopnia 4. Twierdzenie Abela-Ruffiniego mówi, że dla równań stopnia wyższego niż 4 wzory takie nie istnieją.

Évariste Galois (IPA: [evaˈʁist ɡalˈwa], ur. 25 października 1811 r. w Bourg-la-Reine k. Paryża, zm. 31 maja 1832 r. w Paryżu) – francuski matematyk o dużych zasługach dla rozwoju algebry, w szczególności zagadnienia rozwiązywalności równań wielomianowych.Pierre Laurent Wantzel (ur. 5 czerwca 1814 r. w Paryżu, zm. 21 maja 1848 r. w Paryżu) – matematyk francuski, autor twierdzenia o konstruowalności figur płaskich za pomocą cyrkla i linijki.

Jest jasne, że w szczególnych przypadkach rozwiązania dają się znaleźć w postaci dokładnej (przykładem jest równanie ), natomiast w sytuacji ogólnej można obliczać je z dowolną dokładnością za pomocą metod przybliżonych, na przykład metody Newtona-Raphsona.

Pierwiastnik względem ustalonych liczb to w algebrze wyrażenie algebraiczne zbudowane z tych liczb za pomocą czterech podstawowych działań arytmetycznych, potęg o wykładnikach naturalnych (skrócony zapis wielokrotnego mnożenia) oraz pierwiastków stopni naturalnych.Leonhard Euler (ur. 15 kwietnia 1707 w Bazylei, zm. 18 września 1783 w Petersburgu) – szwajcarski matematyk i fizyk; był pionierem w wielu obszarach obu tych nauk. Większą część życia spędził w Rosji i Prusach. Jest uważany za jednego z najbardziej produktywnych matematyków w historii.

Przykładem równania stopnia 5, które nie może być rozwiązane w opisany w twierdzeniu sposób (tj. jego pierwiastki nie wyrażają się za pomocą skończonej liczby działań arytmetycznych i pierwiastkowania), jest równanie

Teoria Galois – nosząca nazwisko Évariste’a Galois teoria matematyczna, a dokładniej teoria algebry abstrakcyjnej, wskazująca związki między teorią ciał a teorią grup. Umożliwia ona redukcję pewnych problemów teorii ciał do zagadnień w pewnym sensie prostszej i lepiej poznanej teorii grup. Pierwiastkowanie – w matematyce operacja odwrotna względem potęgowania. Ponieważ często istnieje wiele liczb (tzw. pierwiastki algebraiczne), które podniesione do pewnej potęgi dają daną liczbę, to pierwiastkowanie nie może być w ogólności nazwane działaniem; często można jednak ograniczyć dziedzinę działania potęgowania tak, by możliwe było jego odwrócenie (dając tzw. pierwiastki arytmetyczne).

Dokładne kryterium, które pozwala stwierdzić, kiedy pierwiastki równania wyrażają się w skończonej postaci przez pierwiastniki podaje teoria Galois: jest tak wtedy i tylko wtedy, gdy grupa Galois tego równania jest rozwiązalna. Ponieważ grupy równań stopnia 2, 3 i 4 zawsze są rozwiązalne, teoria Galois mówi, że odpowiednie typy równań zawsze mają rozwiązania przez pierwiastniki.

Niels Henrik Abel (ur. 5 sierpnia 1802 w Findö koło Stavanger, zm. 6 kwietnia 1829 w Frolandsvark pod Arendal), matematyk norweski. Udowodnił niemożliwość rozwiązania równania algebraicznego stopnia wyższego niż cztery przez pierwiastniki, prowadził badania w dziedzinie teorii szeregów i całek eliptycznych.Paolo Ruffini (ur. 22 września 1765 w Valentano w państwie papieskim, zm. 10 maja 1822 w Modenie we Włoszech) — włoski lekarz i matematyk. Jako pierwszy udowodnił, że nie istnieją ogólne wzory na pierwiastki wielomianu stopnia wyższego niż cztery.

Historia[ | edytuj kod]

Paolo Ruffini, Teoria generale delle equazioni, 1799

Problem rozwiązalności takich równań badany był od końca XVI wieku, gdy matematycy włoscy podali wzory na rozwiązania równań stopni 3 i 4. Zmagali się z nim Bézout, Euler i Lagrange, jednak dopiero Paolo Ruffini wpadł na pomysł, by udowodnić, że w przypadku równań stopnia wyższego niż 4 odpowiednie wzory nie istnieją. Opublikowany przez niego w roku 1799 dowód twierdzenia (Ruffini podał pięć dowodów) zawierał pewne nieścisłości i został zignorowany przez społeczność matematyków – być może przyczyną był fakt, że Ruffini był także lekarzem. W pełni zadowalający dowód opublikował w roku 1824 Niels Henrik Abel, został on następnie uproszczony w roku 1845 przez Pierre’a Wantzela. Jednak znacznie głębsza analiza problemu zawarta jest w pracach Évariste’a Galois pod postacią teorii Galois.

Równanie kwadratowe – równanie algebraiczne z jedną niewiadomą w drugiej potędze i opcjonalnie niższych. Innymi słowy równanie wielomianowe drugiego stopnia, czyli równanie postaci




Reklama