Test dla wariancji

Z Wikipedii, wolnej encyklopedii
Przejdź do nawigacji Przejdź do wyszukiwania

Test dla wariancjitest statystyczny służący do weryfikacji hipotez statystycznych dotyczących wartości wariancji w populacji generalnej lub też do porównania wartości wariancji w dwóch lub kilku populacjach – na podstawie znajomości wartości badanej cechy w losowej próbie (lub w kilku próbach).

Test statystyczny - formuła matematyczna pozwalająca oszacować prawdopodobieństwo spełnienia pewnej hipotezy statystycznej w populacji na podstawie próby losowej z tej populacji.JSTOR (/dʒeɪ-stɔːr/, skrót od ang. Journal Storage) – biblioteka cyfrowa utworzona w 1995 roku. Początkowo zawierała cyfrowe kopie czasopism naukowych o wyczerpanym nakładzie. Następnie zaczęła zbierać także książki, materiały źródłowe oraz aktualne numery czasopism naukowych. Pozwala na wyszukiwanie w pełnej treści niemal 2000 czasopism naukowych.

Rozstrzygnięcie pytań dotyczących wariancji jest ważne m.in. dlatego, że wiele testów służących do porównania wartości średnich w dwóch lub kilku populacjach wymaga przyjęcia założenia o równości wariancji w tych populacjach (tak zwane założenie o jednorodności wariancji). Ponadto wariancja może być miernikiem dokładności w procesie pomiarowym lub produkcyjnym (zbyt duża wariancja wyników pomiaru może na przykład świadczyć o uszkodzeniu lub rozregulowaniu aparatury lub urządzeń).

Błąd pierwszego rodzaju (błąd pierwszego typu, alfa-błąd, false positive) − w statystyce pojęcie z zakresu weryfikacji hipotez statystycznych − błąd polegający na odrzuceniu hipotezy zerowej, która w rzeczywistości jest prawdziwa. Oszacowanie prawdopodobieństwa popełnienia błędu pierwszego rodzaju oznaczamy symbolem α (mała grecka litera alfa) i nazywamy poziomem istotności testu.Populacja statystyczna (inaczej populacja generalna, zbiorowość generalna) – zbiór elementów, podlegających badaniu statystycznemu.

Struktura i podział testów[ | edytuj kod]

Hipotezy dotyczące wariancji testuje się zgodnie z ogólnymi zasadami testowania hipotez statystycznych: formułujemy hipotezy, zakładamy poziom istotności – dopuszczalną wartość błędu pierwszego rodzaju (tj. prawdopodobieństwo odrzucenia prawdziwej hipotezy zerowej) i na podstawie danych z próby wyznaczamy wartość statystyki testowej, po czym porównujemy ją z wartościami krytycznymi odczytanymi z tablic odpowiedniego rozkładu teoretycznego. Przy konstrukcji wszystkich omawianych niżej testów przyjmowane jest założenie, że badane cechy mają w populacjach generalnych rozkład normalny.

Wariancja to w statystyce klasyczna miara zmienności. Intuicyjnie utożsamiana ze zróżnicowaniem zbiorowości; jest średnią arytmetyczną kwadratów odchyleń (różnic) poszczególnych wartości cechy od wartości oczekiwanej.Statystyka odpornościowa lub odporne metody statystyczne (ang. robust statistics) – gałąź statystyki, obejmująca metody projektowane pod kątem odporności na niewielkie odejście od założeń modelu (szczególnie występowanie obserwacji odstających) lub rezygnacji z niektórych założeń.
  • Postać stosowanej statystyki testowej zależy od kilku czynników:
  • czy badamy hipotezę dotyczącą jednej, dwóch czy wielu wariancji?
  • czy porównujemy próby niezależne, czy zależne (skorelowane, powiązane)?
  • jaka jest liczebność próby (prób)?. Przyjmuje się na ogół (dość arbitralnie), że próba jest duża, gdy jej liczebność przekracza 30 obserwacji (można wtedy zakładać, że statystyki mają rozkład normalny – patrz centralne twierdzenie graniczne). W przypadku przeciwnym – mamy do czynienia z próbami małymi.
  • Poniżej przedstawiono w skrócie kilka testów najczęściej stosowanych w poszczególnych sytuacjach.

    Centralne twierdzenie graniczne – jedno z najważniejszych twierdzeń rachunku prawdopodobieństwa, uzasadniające powszechne występowanie w przyrodzie rozkładów zbliżonych do rozkładu normalnego.Testy dla średniej to grupa testów statystycznych, służących do wnioskowania o wartości średniej w populacji, z której pochodzi próba losowa.


    Podstrony: 1 [2] [3] [4]




    Warto wiedzieć że... beta

    Współczynnik korelacji – liczba określająca w jakim stopniu zmienne są współzależne. Jest miarą korelacji dwu (lub więcej) zmiennych. Istnieje wiele różnych wzorów określanych jako współczynniki korelacji. Większość z nich jest normalizowana tak, żeby przybierała wartości od −1 (zupełna korelacja ujemna), przez 0 (brak korelacji) do +1 (zupełna korelacja dodatnia).
    Rozstęp to różnica między największą i najmniejszą wartością cechy statystycznej w zbiorze (lub różnica między najwyższą i najniższą zaobserwowaną wartością zmiennej).
    Poziom istotności – jest to maksymalne dopuszczalne prawdopodobieństwo popełnienia błędu I rodzaju (zazwyczaj oznaczane symbolem α). Określa tym samym maksymalne ryzyko błędu, jakie badacz jest skłonny zaakceptować. Wybór wartości α zależy od badacza, natury problemu i od tego, jak dokładnie chce on weryfikować swoje hipotezy, najczęściej przyjmuje się α = 0,05; rzadziej 0,1, 0,03, 0,01 lub 0,001. Wartość założonego poziomu istotności jest porównywana z wyliczoną z testu statystycznego p-wartością (czasem porównuje się od razu wartości statystyki testowej z wartością odpowiadającą danemu poziomowi istotności). Jeśli p-wartość jest większa, oznacza to, iż nie ma powodu do odrzucenia tzw. hipotezy zerowej H0, która zwykle stwierdza, że obserwowany efekt jest dziełem przypadku.
    Dystrybuanta (fr. distribuer „rozdzielać, rozdawać”) – w rachunku prawdopodobieństwa, statystyce i dziedzinach pokrewnych, funkcja rzeczywista jednoznacznie wyznaczająca rozkład prawdopodobieństwa (tj. miarę probabilistyczną określoną na σ-ciele borelowskich podzbiorów prostej), a więc zawierająca wszystkie informacje o tym rozkładzie. Dystrybuanty są efektywnym narzędziem badania prawdopodobieństwa, ponieważ są obiektami prostszymi niż rozkłady prawdopodobieństwa. W statystyce dystrybuanta rozkładu próby zwana jest dystrybuantą empiryczną i jest blisko związana z pojęciem rangi.
    DOI (ang. digital object identifier – cyfrowy identyfikator dokumentu elektronicznego) – identyfikator dokumentu elektronicznego, który w odróżnieniu od identyfikatorów URL nie zależy od fizycznej lokalizacji dokumentu, lecz jest do niego na stałe przypisany.
    International Standard Serial Number, ISSN czyli Międzynarodowy Znormalizowany Numer Wydawnictwa Ciągłego – ośmiocyfrowy niepowtarzalny identyfikator wydawnictw ciągłych tradycyjnych oraz elektronicznych. Jest on oparty na podobnej koncepcji jak identyfikator ISBN dla książek, ISAN dla materiałów audio-wideo. Niektóre publikacje wydawane w seriach mają przyporządkowany zarówno numer ISSN, jak i ISBN.
    Hipoteza statystyczna to dowolne przypuszczenie dotyczące rozkładu populacji - postaci funkcyjnej lub wartości parametru rozkładu. Proces sprawdzenia prawdziwości tego przypuszczenia na podstawie wyników próby losowej to weryfikacja hipotez statystycznych.

    Reklama