Teoria (logika)

Z Wikipedii, wolnej encyklopedii
Przejdź do nawigacji Przejdź do wyszukiwania

Teoria – niesprzeczny zbiór zdań.

Struktura matematyczna (także model, system semantyczny, model semantyczny, dziedzina, struktura pierwszego rzędu) - w matematyce zbiór obiektów matematycznych połączonych w pewien system.Aksjomat wyboru (ozn. AC od ang. Axiom of Choice) – jeden z aksjomatów teorii mnogości mówiący o możliwości skonstruowania zbioru (nazywanego selektorem) zawierającego dokładnie po jednym elemencie z każdego zbioru należącego do rodziny niepustych zbiorów rozłącznych.

Definicja formalna[ | edytuj kod]

Niech T będzie zbiorem zdań zapisanych w pewnym języku L. Wtedy T jest teorią, jeśli nie istnieje zdanie napisane w języku L takie że T dowodzi zarówno tego zdania, jak i jego zaprzeczenia. Zbiór zdań T dowodzi zdania X, jeśli można przeprowadzić formalny dowód zdania X przy użyciu zdań ze zbioru T oraz aksjomatów i reguł dowodzenia klasycznego rachunku logicznego.

Twierdzenie o zwartości to twierdzenie mówiące, że nieskończony zbiór zdań rachunku predykatów pierwszego rzędu jest spełnialny, jeśli tylko każdy jego podzbiór skończony jest spełnialny. Równoważnie, jeśli taki zbiór jest sprzeczny, to istnieje jego skończony podzbiór, który jest sprzeczny.Teoria modeli (nazywana też czasem semantyką logiczną) to dział logiki matematycznej zajmujący się badaniem własności modeli teorii aksjomatycznych i zależności między nimi. Dziedzina ta jest w znacznym stopniu powiązana z algebrą i teorią mnogości, ale ma też mocno rozbudowany własny aparat pojęciowy i w swojej współczesnej postaci jest w pełni samodzielną dziedziną wiedzy.

Czasami w definicji teorii dodatkowo zakłada się, że jest ona zamknięta ze względu na operację brania konsekwencji logicznej. Oznacza to, że jeśli teoria T dowodzi jakiegoś zdania X, to zdanie X musi należeć do T.

Własności[ | edytuj kod]

Twierdzenie o zwartości mówi, że zbiór zdań jest niesprzeczny, jeśli każdy jego skończony fragment jest niesprzeczny. W świetle powyższej definicji niesprzeczności wydaje się to oczywiste, bo jeśli z danego zbioru zdań możemy udowodnić zarówno jakieś zdanie, jak i jego zaprzeczenie, to możemy też przeprowadzić ten sam dowód korzystając tylko ze skończenie wielu zdań z tego zbioru. Jeśli jednak badamy to zagadnienie z punktu widzenia semantyki, a nie syntaktyki, to potrzebujemy twierdzenia o istnieniu modelu, które w 1931 roku udowodnił austriacki logik i matematyk Kurt Gödel. Mówi ono, że każda spójna teoria (tzn. taka w której nie istnieje dowód sprzeczności) ma model i umożliwia badanie własności dowolnej teorii przy użyciu metod teorii modeli.

Zbiór – pojęcie pierwotne teorii zbiorów (znanej szerzej jako teoria mnogości; za jej twórcę uważa się Georga Cantora) leżące u podstaw całej matematyki; intuicyjnie jest to nieuporządkowany zestaw różnych obiektów, czy też kolekcja niepowtarzających się komponentów bez wyróżnionej kolejności.Algorytm – w matematyce skończony ciąg jasno zdefiniowanych czynności, koniecznych do wykonania pewnego rodzaju zadań. Słowo "algorytm" pochodzi od starego angielskiego słowa algorism, oznaczającego wykonywanie działań przy pomocy liczb arabskich (w odróżnieniu od abacism – przy pomocy abakusa), które z kolei wzięło się od nazwiska, które nosił Muhammad ibn Musa al-Chuwarizmi (أبو عبد الله محمد بن موسى الخوارزمي), matematyk perski z IX wieku.

Teoria T w języku L jest zupełna, jeśli dla każdego zdania X napisanego w języku L w teorii T można dowieść zdania X lub jego zaprzeczenia (tj.: suma domknięcia T ze względu na wyprowadzanie oraz jego negacji jest równa zbiorowi wszystkich zdań w L). Przy użyciu zakładanego zwykle przez matematyków aksjomatu wyboru można wykazać, że każdą teorię w jakimś języku L można rozszerzyć do teorii zupełnej w tym języku.

Rachunek predykatów pierwszego rzędu – (ang. first order predicate calculus) to system logiczny, w którym zmienna, na której oparty jest kwantyfikator, może być elementem pewnej wybranej dziedziny (zbioru), nie może natomiast być zbiorem takich elementów. Tak więc nie mogą występować kwantyfikatory typu "dla każdej funkcji z X na Y ..." (gdyż funkcja jest podzbiorem X × Y), "istnieje własność p, taka że ..." czy "dla każdego podzbioru X zbioru Z ...". Rachunek ten nazywa się też krótko rachunkiem kwantyfikatorów, ale często używa się też nazwy logika pierwszego rzędu (szczególnie wśród matematyków zajmujących się logiką matematyczną).

Teoria T w języku L jest rozstrzygalna, jeśli istnieje algorytm, który dla każdego zdania X napisanego w języku L rozstrzyga, czy T dowodzi X.

Teoria T jest kategoryczna, jeśli T ma dokładnie jeden model z dokładnością do izomorfizmu. Jest to raczej rzadkie zjawisko, bo kategoryczne są tylko te teorie, które są zupełne i mają model skończony. Dlatego osłabia się tę definicję i mówi, że teoria T jest kategoryczna w mocy m, jeśli T ma dokładnie jeden model mocy m z dokładnością do izomorfizmu.





Reklama