Szereg Laurenta

Z Wikipedii, wolnej encyklopedii
Przejdź do nawigacji Przejdź do wyszukiwania
Obszar zbieżności szeregu Laurenta.

Szereg Laurenta funkcji zespolonej to reprezentacja tej funkcji w postaci szeregu potęgowego, w którym występują również składniki o wykładniku ujemnym. Rozwinięcia tego używa się, gdy funkcji nie można rozwinąć w szereg Taylora. Nazwa szeregu pochodzi od nazwiska Pierre Alphonse Laurenta, który opublikował go w 1843 roku.

MathWorld – encyklopedia matematyczna online, sponsorowana przez Wolfram Research, twórcę i producenta programu Mathematica; współsponsorem jest National Science Foundation (National Science Digital Library).Wzór Taylora – przedstawienie funkcji (n+1)-razy różniczkowalnej za pomocą wielomianu zależnego od kolejnych jej pochodnych oraz dostatecznie małej reszty. Twierdzenia mówiące o możliwości takiego przedstawiania pewnych funkcji (nawet dość abstrakcyjnych przestrzeni) noszą zbiorczą nazwę twierdzeń Taylora od nazwiska angielskiego matematyka Brooka Taylora, który opublikował pracę na temat lokalnego przybliżania funkcji rzeczywistych w podany niżej sposób. Ta własność funkcji różniczkowalnych znana była już przed Taylorem – w 1671 odkrył ją James Gregory. W przypadku funkcji nieskończenie wiele razy różniczkowalnych, przedstawienie oparte na tej własności może przyjąć postać szeregu zwanego szeregiem Taylora. Poniżej podane jest uogólnione twierdzenie Taylora dla funkcji o wartościach w dowolnych przestrzeniach unormowanych – w szczególności jest więc ono prawdziwe dla funkcji o wartościach rzeczywistych czy wektorowych.

Ogólny wzór[ | edytuj kod]

Jeżeli funkcję możemy zapisać jako sumę funkcji oraz takich że można je rozwinąć w zbieżne szeregi na pewnym obszarze D:

Szereg funkcyjny – szereg, którego wyrazami są funkcje o wspólnej dziedzinie. Dla każdego punktu dziedziny suma szeregu wartości funkcji w tym punkcie (o ile istnieje) jest sumą zwykłego szeregu liczbowego. W zastosowaniach najczęściej pojawiają się szeregi funkcyjne zmiennej rzeczywistej lub zespolonej o wartościach rzeczywistych lub zespolonych, jednakże pojęcie szeregu funkcyjnego ma sens także w przypadku funkcji o wartościach w ogólnych przestrzeniach funkcyjnych (np. przestrzeniach Banacha).Wnętrze zbioru (figury, bryły) F – pojęcie w geometrii lub topologii, zbiór tych punktów przestrzeni, które należą do zbioru F wraz z pewnym swoim otoczeniem.
(część regularna) (część osobliwa)

to funkcję przedstawiamy w postaci:

Całka krzywoliniowa – całka, w której całkowana funkcja przyjmuje wartości wzdłuż pewnej krzywej (regularnej). Gdy krzywa całkowania jest zamknięta, to całkę nazywa się niekiedy całką okrężną.Pierre Alphonse Laurent (1813-1854) – francuski matematyk. Autor prac z zakresu mechaniki, fizyki matematycznej, funkcji analitycznych oraz rachunku wariacyjnego. Twórca tzw. szeregu Laurenta. Z zawodu Laurent był inżynierem wojskowości.

Reprezentację taką nazywamy szeregiem Laurenta funkcji Część regularna jest zbieżna w kole a część osobliwa na zewnątrz koła gdzie

Wielka Encyklopedia Rosyjska (ros. Большая российская энциклопедия, БРЭ) – jedna z największych encyklopedii uniwersalnych w języku rosyjskim, wydana w 36 tomach w latach 2004–2017. Wydana przez spółkę wydawniczą o tej samej nazwie, pod auspicjami Rosyjskiej Akademii Nauk, na mocy dekretu prezydenckiego Władimira Putina nr 1156 z 2002 roku Wzór Taylora – przedstawienie funkcji (n+1)-razy różniczkowalnej za pomocą wielomianu zależnego od kolejnych jej pochodnych oraz dostatecznie małej reszty. Twierdzenia mówiące o możliwości takiego przedstawiania pewnych funkcji (nawet dość abstrakcyjnych przestrzeni) noszą zbiorczą nazwę twierdzeń Taylora od nazwiska angielskiego matematyka Brooka Taylora, który opublikował pracę na temat lokalnego przybliżania funkcji rzeczywistych w podany niżej sposób. Ta własność funkcji różniczkowalnych znana była już przed Taylorem – w 1671 odkrył ją James Gregory. W przypadku funkcji nieskończenie wiele razy różniczkowalnych, przedstawienie oparte na tej własności może przyjąć postać szeregu zwanego szeregiem Taylora. Poniżej podane jest uogólnione twierdzenie Taylora dla funkcji o wartościach w dowolnych przestrzeniach unormowanych – w szczególności jest więc ono prawdziwe dla funkcji o wartościach rzeczywistych czy wektorowych.

Szereg Laurenta jest zbieżny w pierścieniu Jeżeli funkcja jest analityczna w tym pierścieniu, to daje się przedstawić w postaci szeregu Laurenta a współczynniki wyrażają się, za pomocą całki krzywoliniowej wzorem

Potęgowanie – działanie dwuargumentowe będące uogólnieniem wielokrotnego mnożenia elementu przez siebie. Potęgowany element nazywa się podstawą, zaś liczba mnożeń, zapisywana zwykle w indeksie górnym po prawej stronie podstawy, nosi nazwę wykładnika. Wynik potęgowania to potęga elementu.

gdzie jest dowolną krzywą zamkniętą położoną w obszarze zbieżności i zorientowaną dodatnio względem swego wnętrza (obiegającą punkt jednokrotnie w kierunku przeciwnym do ruchu wskazówek zegara).

Podstrony: 1 [2] [3]




Reklama