Relacja dwuargumentowa

Z Wikipedii, wolnej encyklopedii
Przejdź do nawigacji Przejdź do wyszukiwania

Relacja dwuargumentowa, dwuczłonowa albo binarna – dowolny podzbiór iloczynu kartezjańskiego dwóch zbiorów.

Linia prosta lub prosta – jedno z podstawowych pojęć geometrii, szczególny przypadek nieograniczonej z obydwu stron krzywej o nieskończonym promieniu krzywizny w każdym punkcie.Figura geometryczna – w geometrii inna nazwa podzbioru danej przestrzeni, zwykle przestrzeni euklidesowej, afinicznej lub rzutowej.
Wprowadzenie do zagadnienia można znaleźć w artykule o relacjach skończonej liczby argumentów.

Definicje[ | edytuj kod]

 Zapoznaj się również z: iloczyn kartezjańskipara uporządkowana.

Relacja dwuargumentowa jako podzbiór iloczynu kartezjańskiego i jest zbiorem par uporządkowanych postaci należących do zbioru czasami zamiast pisze się i mówi, że element jest w relacji z elementem bądź między elementami zachodzi relacja Istnieje pewna rozbieżność względem nazewnictwa dotyczącego zbiorów; tutaj dziedziną i przeciwdziedziną nazywane będą odpowiednio zbiory i z kolei zbiór

Podzbiór – pewna „część” danego zbioru, czyli dla danego zbioru, nazywanego nadzbiorem, zbiór składający się z pewnej liczby jego elementów, np. żadnego, jednego, wszystkich. Pierwszy przypadek nazywa się podzbiorem pustym, drugi – podzbiorem jednoelementowym lub singletonem, trzeci – podzbiorem niewłaściwym.Algebra ogólna – obiekt matematyczny będący przedmiotem badań algebry uniwersalnej. Czasami algebra uniwersalna nazywana jest algebrą ogólną, wówczas rozważane w niej obiekty nazywa się zwykle algebrami abstrakcyjnymi lub po prostu algebrami.

tzn. zbiór złożony ze wszystkich poprzedników par należących do relacji nazywany będzie dziedziną lewostronną (często nazywa się ją nieprecyzyjnie po prostu dziedziną), zaś zbiór

Relacja przeciwsymetryczna – relacja, która jeżeli zachodzi dla pary ( x , y ) {displaystyle (x,y)} , to nie zachodzi dla pary ( y , x ) {displaystyle (y,x)} .Ciało uporządkowane – ciało K, w którym wyróżniony jest zbiór D elementów dodatnich o następujących własnościach:

tzn. zbiór złożony ze wszystkich następników par należących do relacji nazywany będzie dziedziną prawostronną lub obrazem tej relacji (zob. Własności). Sumę dziedzin lewostronnej i prawostronnej (dziedziny i obrazu) nazywa się polem relacji. Zbiór wszystkich relacji dwuargumentowych między zbiorami ma moc

Wykres funkcji – potocznie graficzne przedstawienie funkcji. Ogólniej, w matematyce wykresem funkcji f : X → Y {displaystyle f:X o Y} , gdzie X {displaystyle X} i Y {displaystyle Y} są dowolnymi zbiorami, nazywamy podzbiór S ⊂ X × Y {displaystyle Ssubset X imes Y} dany wzorem:Równość – relacja, która jest relacją równoważności. Jest to zatem relacja zwrotna, przechodnia i symetryczna. Ważną cechą relacji równości a = b {displaystyle a=b} jest to, że dla dowolnej funkcji f {displaystyle f} zachodzi:


Podstrony: 1 [2] [3]




Warto wiedzieć że... beta

Relacja równoważności – zwrotna, symetryczna i przechodnia relacja dwuargumentowa określona na pewnym zbiorze utożsamiająca ze sobą w pewien sposób jego elementy, co ustanawia podział tego zbioru na rozłączne podzbiory według tej relacji. Podobnie każdy podział zbioru niesie ze sobą informację o pewnej relacji równoważności.
Płaszczyzna – jedno z podstawowych pojęć pierwotnych geometrii Euklidesa i geometrii absolutnej. W niektórych innych aksjomatyzacjach geometrii, na przykład w geometrii analitycznej, płaszczyzna nie jest pojęciem pierwotnym, lecz zbiorem punktów.
Układ współrzędnych – funkcja przypisująca każdemu punktowi danej przestrzeni (w szczególności przestrzeni dwuwymiarowej – płaszczyzny, powierzchni kuli itp.) skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu.
Relacja symetryczna – relacja, która jeśli zachodzi dla pary ( x , y ) {displaystyle (x,y)} , to zachodzi też dla pary ( y , x ) {displaystyle (y,x)} .
Funkcja „na” a. surjekcja pisane też czasami jako suriekcja – funkcja przyjmująca jako swoje wartości wszystkie elementy przeciwdziedziny, tj. której obraz jest równy przeciwdziedzinie.
Przystawanie (kongruencja) – w geometrii relacja równoważności figur zdefiniowana poprzez izometrię rozumianą intuicyjnie jako identyczność kształtu i wielkości figury: dwie figury uważa się za przystające (kongruentne), jeśli istnieje izometria między nimi.
Relacja antysymetryczna, relacja słabo antysymetryczna – dwuczłonowa relacja, która nie może zachodzić jednocześnie dla par ( x , y ) {displaystyle (x,y)} i ( y , x ) {displaystyle (y,x)} dla różnych x {displaystyle x} i y {displaystyle y} .

Reklama