Rachunek wariacyjny

Z Wikipedii, wolnej encyklopedii
Przejdź do nawigacji Przejdź do wyszukiwania

Rachunek wariacyjny – dziedzina analizy matematycznej zajmująca się szukaniem ekstremów funkcjonałów określonych na przestrzeniach funkcyjnych.

Przestrzeń liniowa lub wektorowa – w matematyce zbiór obiektów (nazywanych "wektorami"), które mogą być, nieformalnie rzecz ujmując, skalowane i dodawane. Formalnie jest to zbiór z określonymi dwoma działaniami: dodawaniem elementów tej przestrzeni (wektorów) i mnożeniem przez elementy ustalonego ciała, które związane są ze sobą poniższymi aksjomatami. Przestrzenie liniowe to podstawowy obiekt badań algebry liniowej i analizy funkcjonalnej. Znajdują zastosowanie niemal we wszystkich gałęziach matematyki, naukach ścisłych i inżynierii.Library of Congress Control Number (LCCN) – numer nadawany elementom skatalogowanym przez Bibliotekę Kongresu wykorzystywany przez amerykańskie biblioteki do wyszukiwania rekordów bibliograficznych w bazach danych i zamawiania kart katalogowych w Bibliotece Kongresu lub u innych komercyjnych dostawców.

Funkcjonały są to odwzorowania z przestrzeni wektorowej w liczby rzeczywiste. Rachunek wariacyjny zajmuje się więc szukaniem funkcji, dla której dany funkcjonał przyjmuje wartość ekstremalną. Najczęściej funkcjonał dany jest całką oznaczoną funkcji.

Uwagi ogólne[ | edytuj kod]

Podstawowym zadaniem rachunku wariacyjnego jest znajdowanie ekstremalnych wartości funkcjonałów o postaci całek oznaczonych, reprezentujących określone wielkości fizyczne takie jak czas, długość, powierzchnia, ciężar, sztywność itp. Zadanie to jest analogiczne do zadania rachunku różniczkowego, poszukiwania ekstremum funkcji Jest ono osiągane w punkcie mającym tę własność, że w przypadku maksimum i w przypadku minimum, gdzie jest małą wariacją zmiennej

Linia geodezyjna, czasem nazywana krótko: geodezyjna – krzywa w przestrzeni metrycznej (ściślej: w G-przestrzeni), zawierająca najkrótszą drogę pomiędzy dowolnymi dostatecznie bliskimi swoimi punktami, nie dająca się już wydłużyć z żadnej strony. Formalnie definiuje się je jako krzywe o zerowej krzywiznie geodezyjnej. Dla przestrzeni euklidesowej geodezyjne są zwykłymi prostymi.Całka oznaczona – w matematyce, w zależności od kontekstu, synonim nazwy "całka Riemanna" albo ogólniej: określenie odnoszące się do tych pojęć całki, dla których zachodzi pewna wersja wzoru Newtona-Leibniza, jak na przykład:

W rachunku wariacyjnym poszukujemy takiej funkcji dla której funkcjonał ma tę własność, że w przypadku maksimum i w przypadku minimum, gdzie jest małą wariacją funkcji

Promień świetlny to nieskończenie wąska wiązka światła. Jest to model używany do opisu rozchodzenia się światła w optyce geometrycznej.Zasada Fermata w optyce jest szczególnym przypadkiem zasady najmniejszego działania. Sformułował ją Pierre de Fermat, a treść zasady w jego ujęciu miała następujące brzmienie:

Poszukiwanie ekstremum funkcji (o ciągłej pochodnej) w rachunku różniczkowym wymaga rozwiązania równania które jest warunkiem koniecznym istnienia tego ekstremum. Podobnie w rachunku wariacyjnym poszukiwanie ekstremum funkcjonału wymaga spełnienia określonego warunku koniecznego dla jego istnienia, którym okazuje się zwykle pewne równanie różniczkowe dla funkcji

Funkcjonał – w matematyce to przekształcenie z przestrzeni wektorowej w ciało skalarne, nad którym rozpięta jest ta przestrzeń. Jest to funkcja, której argumentami są wektory, a wartościami skalary. Często tą przestrzenią jest przestrzeń funkcji - wtedy argumentem funkcjonału jest funkcja. Dlatego czasem uważany jest za funkcję funkcji.Współczynnik załamania ośrodka jest miarą zmiany prędkości rozchodzenia się fali w danym ośrodku w stosunku do prędkości w innym ośrodku (pewnym ośrodku odniesienia). Dokładniej jest on równy stosunkowi prędkości fazowej fali w ośrodku odniesienia do prędkości fazowej fali w danym ośrodku


Podstrony: 1 [2] [3]




Warto wiedzieć że... beta

Rachunek różniczkowy i całkowy – dział matematyki zajmujący się badaniem funkcji zmiennej rzeczywistej lub zespolonej w oparciu o podstawowe dla tej dyscypliny matematycznej pojęcia pochodnych i całek.
Zbiór liczb rzeczywistych – uzupełnienie zbioru liczb wymiernych. Zbiór liczb rzeczywistych zawiera m.in. liczby naturalne, ujemne, całkowite, pierwiastki liczb dodatnich, wymierne, niewymierne, przestępne, itd. Z drugiej strony na liczby rzeczywiste można też patrzeć jak na szczególne przypadki liczb zespolonych.
Ekstremum funkcji (l. mn. ekstrema; z łac. extrēmus – najdalszy, ostatni) – maksymalna lub minimalna wartość funkcji.
Geometria euklidesowa – klasyczna odmiana geometrii opisana po raz pierwszy przez Euklidesa w dziele Elementy (z III w. p.n.e.). Zebrał on całą ówczesną wiedzę matematyczną znaną Grekom, dziś jego dzieło przedstawia się jako pierwszą znaną aksjomatyzację w historii matematyki. Pierwotnie uprawiano ją jedynie na płaszczyźnie i w przestrzeni trójwymiarowej wiążąc ją jednocześnie ze światem fizycznym, który miała opisywać, nie dopuszczając tym samym możliwości badania innych odmian geometrii.
Kontrola autorytatywna – w terminologii bibliotekoznawczej określenie procedur zapewniających utrzymanie w sposób konsekwentny haseł (nazw, ujednoliconych tytułów, tytułów serii i haseł przedmiotowych) w katalogach bibliotecznych przez zastosowanie wykazu autorytatywnego zwanego kartoteką wzorcową.
Krzywa – w matematyce jedno z fundamentalnych pojęć takich dziedzin jak geometria, czy geometria różniczkowa; stosowane również w mowie potocznej. Mimo intuicyjnej prostoty okazało się ono być bardzo trudne do ścisłego zdefiniowania. Poprawna definicja powinna obejmować „dowolną linię” (w szczególności na płaszczyźnie lub przestrzeni trójwymiarowej), w tym także linię prostą, która mogłaby się rozgałęziać i przerywać.
Twierdzenie Pitagorasa – twierdzenie geometrii euklidesowej dotyczące trójkątów prostokątnych, równoważne w istocie jest piątemu pewnikowi Euklidesa o prostych równoległych. W zachodnioeuropejskim kręgu kulturowym przypisuje się je żyjącemu w VI wieku p.n.e. greckiemu matematykowi i filozofowi Pitagorasowi, chociaż niemal pewne jest, że znali je przed nim starożytni Egipcjanie. Wiadomo też, że jeszcze przed Pitagorasem znano je w starożytnych Chinach, Indiach i Babilonii.

Reklama