Pseudoskalar

Z Wikipedii, wolnej encyklopedii
Przejdź do nawigacji Przejdź do wyszukiwania

Pseudoskalar – wielkość liczbowa zachowywana w przesunięciu równoległym i obrocie układu współrzędnych, ale zmieniająca znak przy zmianie zwrotu każdej osi na przeciwny. W teorii algebr Clifforda nad n-wymiarową przestrzenią liniową z bazą przestrzenią pseudoskalarów jest jednowymiarowa przestrzeń rozpięta na iloczynie .

Aksjomaty i konstrukcje liczb – metody ścisłego definiowania liczb używane w matematyce. Aksjomaty liczb to warunki, jakie muszą spełniać pewne obiekty oraz działania na nich, aby mogły być uznane za liczby danego rodzaju (np. liczby naturalne, liczby wymierne itp.). Konstrukcje liczb są algebrami, tak utworzonymi, aby spełniały właściwe danym liczbom aksjomaty.Układ współrzędnych – funkcja przypisująca każdemu punktowi danej przestrzeni (w szczególności przestrzeni dwuwymiarowej – płaszczyzny, powierzchni kuli itp.) skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu.

Iloczyn skalarny wektora i pseudowektora daje pseudoskalar.

Iloczyn wektora przez pseudoskalar daje pseudowektor.

Przykłady[ | edytuj kod]

  • Iloczyn mieszany wektorów w przestrzeni trójwymiarowej jest pseudoskalarem.
  • Iloczyn zewnętrzny wektorów -wymiarowej przestrzeni jest pseudoskalarem.
  • Wektor (z łac. [now.], „niosący; ten, który niesie; nośnik”, od vehere, „nieść”; via, „droga”) – istotny w matematyce elementarnej, inżynierii i fizyce obiekt mający moduł (zwany też – zdaniem niektórych niepoprawnie - długością lub wartością), kierunek wraz ze zwrotem (określającym orientację wzdłuż danego kierunku).Pseudowektor (wektor osiowy) – wielkość fizyczna, która przy ciągłych transformacjach układu odniesienia (takich jak translacja lub obrót) przekształca się jak wektor, natomiast przy odbiciu zwierciadlanym i symetrii środkowej transformuje się odmiennie (np. zmienia zwrot wektora).


    Podstrony: 1 [2] [3]




    Warto wiedzieć że... beta

    Niezmiennik przekształcenia – w matematyce cecha obiektu poddawanego danemu przekształceniu, która nie ulega zmianie. Np. pomnożenie przez liczbę wymierną różną od 0 nie zmienia wymierności dowolnej liczby rzeczywistej, więc wymierność jest niezmiennikiem dla dowolnej liczby rzeczywistej i operacji mnożenia przez liczbę wymierną. Wynika z tego dosyć trywialny wniosek, że nie możemy w skończenie wielu operacjach mnożenia przez liczby wymierne przekształcić liczby wymiernej w niewymierną i odwrotnie.
    Iloczyn skalarny – w matematyce pewna forma dwuliniowa na danej przestrzeni liniowej, tj. dwuargumentowa funkcja o szczególnych własnościach przyporządkowująca dwóm wektorom danej przestrzeni liniowej wartość skalarną. Czasami spotyka się również nazwę iloczyn wewnętrzny, który zwykle odnosi się jednak do ogólnych iloczynów skalarnych wprowadzanych w abstrakcyjnych przestrzeniach liniowych nazywanych wtedy przestrzeniami unitarnymi; przestrzenie afiniczne z wyróżnionym iloczynem skalarnym nazywa się przestrzeniami euklidesowymi.
    Translacja, przesunięcie – przekształcenie prostej, płaszczyzny lub dowolnej przestrzeni afinicznej, które można intuicyjnie rozumieć jako równoległe przesunięcie wszystkich punktów dziedziny bez deformacji i obracania.

    Reklama