Proces Poissona

Z Wikipedii, wolnej encyklopedii
Przejdź do nawigacji Przejdź do wyszukiwania

Proces Poissona – nazwana na cześć francuskiego matematyka, Siméona Denisa Poissona, rodzina (będąca procesem stochastycznymprocesem Markowa) zdefiniowana w następujący sposób:

Siméon Denis Poisson (ur. 21 czerwca 1781 w Pithiviers – zm. 25 kwietnia 1840 r. w Paryżu), francuski mechanik teoretyk, fizyk i matematyk. Zajmował się elektrycznością, magnetyzmem, grawitacją, balistyką, astronomią i mechaniką. W matematyce zajmował się całkami oznaczonymi, równaniami różnicowymi i różniczkowymi oraz teorią prawdopodobieństwa. Rozkład Erlanga – ciągły rozkład prawdopodobieństwa, związany z rozkładem wykładniczym i rozkładem gamma. Rozkład Erlanga został opracowany przez A. K. Erlanga do szacowania liczby rozmów telefonicznych, łączonych jednocześnie przez operatora w ręcznej centrali telefonicznej. Później uwzględniono również czas oczekiwania w kolejce. Obecnie rozkład ten znalazł też zastosowanie w teorii procesów stochastycznych.

Gdzie ciąg jest ciągiem niezależnych zmiennych losowych o rozkładzie wykładniczym z jednakowym dla każdej ze zmiennych parametrem

Rozkład wykładniczy to rozkład zmiennej losowej opisujący sytuację, w której obiekt może przyjmować stany X i Y, przy czym obiekt w stanie X może ze stałym prawdopodobieństwem przejść w stan Y w jednostce czasu. Prawdopodobieństwo wyznaczane przez ten rozkład to prawdopodobieństwo przejścia ze stanu X w stan Y w czasie δt.Zmienna losowa – funkcja przypisująca zdarzeniom elementarnym liczby. Intuicyjnie: odwzorowanie przenoszące badania prawdopodobieństwa z niewygodnej przestrzeni probabilistycznej do dobrze znanej przestrzeni euklidesowej. Zmienne losowe to funkcje mierzalne względem przestrzeni probabilistycznych.

Zmienna oznacza czas pomiędzy (i-1)-szym a i-tym zdarzeniem (tradycyjnie nazywanym zgłoszeniem), a to liczba zgłoszeń, które wystąpiły do chwili t.

Równoważne definicje[ | edytuj kod]

Proces stochastyczny jest procesem Poissona o intensywności wtedy i tylko wtedy, gdy:

(i)

  1. W czasie startowym przyjmuje wartość zero.
  2. ma przyrosty niezależne.
  3. różnice między stanami mają rozkład Poissona o podanym parametrze.

(ii)

  1. ma niezależne i stacjonarne przyrosty.

Niezależność przyrostów oznacza, że liczba zdarzeń w dwóch rozłącznych przedziałach czasowych są niezależnymi zmiennymi losowymi. Proces ten więc nie ma pamięci – wcześniejsze realizacje procesu nie wpływają na prawdopodobieństwo zajścia zdarzenia w danym czasie.

Własności[ | edytuj kod]

Niech Wtedy ma rozkład Erlanga z parametrami

Proces Poissona może przebiegać w czasie dyskretnym lub ciągłym, ten drugi rodzaj jest jednym z najlepiej zbadanych przykładów procesu Lévy’ego.

Zobacz też[ | edytuj kod]

  • teoria prawdopodobieństwa




  • Reklama