Powierzchnia

Z Wikipedii, wolnej encyklopedii
Przejdź do nawigacji Przejdź do wyszukiwania

Powierzchniazbiór punktów (miejsce geometryczne) o tej własności, iż można wokół każdego jej punktu zbudować (niewielką) sferę, która w przecięciu z tym zbiorem daje jedynie obiekty jednowymiarowe (krzywe). Jest to trójwymiarowy odpowiednik pojęcia krzywej. Powierzchnia jest także potocznym określeniem pola powierzchni.

Definicja intuicyjna: Powierzchnia (ściślej: brzeg) kuli. Zbiór punktów oddalonych o pewną zadaną odległość (promień sfery) od wybranego punktu (środek sfery).Przestrzeń trójwymiarowa - potoczna nazwa przestrzeni euklidesowej o trzech wymiarach, lub równoważnej jej przestrzeni kartezjańskiej. Przymiotnik "trójwymiarowa" oznacza, że każdemu punktowi tej przestrzeni odpowiada trójka uporządkowana liczb rzeczywistych, zwanych współrzędnymi. Każdej trójce liczb rzeczywistych także odpowiada punkt tej przestrzeni.

Definicja formalna[ | edytuj kod]

Powierzchnia to continuum o wymiarze 2, tj. takie continuum, iż każdy jego punkt posiada pewne otoczenie, którego brzeg nie zawiera żadnego continuum o wymiarze 2 lub wyższym jednak zawiera continuum o wymiarze 1.

Płaszczyzna – jedno z podstawowych pojęć pierwotnych geometrii Euklidesa i geometrii absolutnej. W niektórych innych aksjomatyzacjach geometrii, na przykład w geometrii analitycznej, płaszczyzna nie jest pojęciem pierwotnym, lecz zbiorem punktów.Pole powierzchni (potocznie po prostu powierzchnia figury lub pole figury) – miara, przyporządkowująca danej figurze nieujemną liczbę w pewnym sensie charakteryzującą jej rozmiar.

Powierzchnia może w szczególności rozgałęziać się.

Podstrony: 1 [2] [3]




Warto wiedzieć że... beta

Hiperboloida – nieograniczona, nierozwijalna powierzchnia drugiego stopnia (kwadryka), powstała przez obrót hiperboli wokół osi symetrii hiperboli rozłącznej z nią (hiperboloida jednopowłokowa) lub osi prostopadłej do poprzedniej, przechodzącej przez oba wierzchołki hiperboli (hiperboloida dwupowłokowa), a także każda otrzymana z takiej przez przekształcenie afiniczne przestrzeni. Każda hiperboloida ma środek symetrii oraz co najmniej trzy osie i trzy płaszczyzny symetrii.
Powierzchnia wielościenna - brzeg wielościanu, czyli powierzchnia utworzona z wielokątów o rozłącznych wnętrzach i każdym boku wspólnym dla dwóch wielokątów.
Genus - pojęcie występujące w topologii i topologii algebraicznej, niezmiennik topologiczny, liczba całkowita charakteryzująca rozmaitość topologiczną równa liczbie otworów w rozmaitości. Tak więc dla sfery jest to 0, dla torusa 1, dla precelka 3 itp.
Zbiór – pojęcie pierwotne teorii zbiorów (znanej szerzej jako teoria mnogości; za jej twórcę uważa się Georga Cantora) leżące u podstaw całej matematyki; intuicyjnie jest to nieuporządkowany zestaw różnych obiektów, czy też kolekcja niepowtarzających się komponentów bez wyróżnionej kolejności.
Helikoida to powierzchnia, którą tworzy prosta obracająca się wokół innej prostej ze stałą prędkością kątową i jednocześnie przesuwająca się równolegle do tej prostej ze stałą prędkością liniową. Jej nazwa pochodzi od jej pokrewieństwa z linią śrubową (helisą): przez każdy punkt helikoidy przechodzi linia śrubowa całkowicie w niej zawarta. Helikoida jest jedną z pierwszych odkrytych powierzchni minimalnych, jest też powierzchnią prostokreślną.
Krzywa – w matematyce jedno z fundamentalnych pojęć takich dziedzin jak geometria, czy geometria różniczkowa; stosowane również w mowie potocznej. Mimo intuicyjnej prostoty okazało się ono być bardzo trudne do ścisłego zdefiniowania. Poprawna definicja powinna obejmować „dowolną linię” (w szczególności na płaszczyźnie lub przestrzeni trójwymiarowej), w tym także linię prostą, która mogłaby się rozgałęziać i przerywać.
Wymiar, w intuicyjnym znaczeniu, to minimalna liczba niezależnych parametrów potrzebnych do opisania jakiegoś zbioru. Zatem jest to liczba przypisana zbiorowi lub przestrzeni w taki sposób, by punkt miał w.=0, prosta w.=1, płaszczyzna w.=2 itd.

Reklama