• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Podbaza



    Podstrony: [1] 2 [3]
    Przeczytaj także...
    Przestrzeń topologiczna – podstawowe pojęcie topologii; zbiór wyposażony w strukturę (tzw. topologię) wyróżniającą pewną rodzinę jego podzbiorów (tzw. zbiory otwarte), co umożliwia określenie czy dany punkt leży „blisko”, czy „daleko” od danego podzbioru (w jego domknięciu lub poza nim) mimo braku pojęcia odległości (metryki).Półpłaszczyzna – każda z dwóch części płaszczyzny, na jakie dzieli ją leżąca na niej prosta, wraz z tą prostą. Prosta ta jest wspólnym brzegiem wspomnianych półpłaszczyzn.
    Określanie topologii za pomocą podbazy[ | edytuj kod]

    Dowolną rodzinę podzbiorów danego zbioru można przyjąć za podbazę pewnej topologii, o ile zawiera ona zbiór pusty oraz suma wszystkich zbiorów tej rodziny jest całą przestrzenią. Za zbiory otwarte należy wówczas przyjąć sumy dowolnej liczby skończonych przecięć elementów podbazy.

    Płaszczyzna – jedno z podstawowych pojęć pierwotnych geometrii Euklidesa i geometrii absolutnej. W niektórych innych aksjomatyzacjach geometrii, na przykład w geometrii analitycznej, płaszczyzna nie jest pojęciem pierwotnym, lecz zbiorem punktów.Przedział – zbiór elementów danego zbioru częściowo uporządkowanego, zawartych między dwoma ustalonymi elementami tego zbioru, nazywanymi początkiem i końcem przedziału.

    Na przykład wyróżniając jako podbazę rodzinę wszystkich przedziałów postaci (a, +∞) oraz zbiór pusty określamy pewną topologię w zbiorze liczb rzeczywistych – nie jest to jednak topologia euklidesowa.

    Podbaza domknięta[ | edytuj kod]

    Analogicznie definiuje się pojęcie podbazy domkniętej – jest to taka rodzina podzbiorów domkniętych danej przestrzeni, że rodzina sum skończonej liczby elementów podbazy tworzy bazę domkniętą.

    Baza przestrzeni topologicznej – dla danej przestrzeni topologicznej X, rodzina otwartych podzbiorów przestrzeni X o tej własności, że każdy zbiór otwarty w X można przedstawić w postaci sumy pewnej podrodziny zawartej w bazie. Każda przestrzeń topologiczna ma bazę – jeżeli τ jest topologią w zbiorze X, to jest ona również (trywialnie) jej bazą. Obrazowo, baza przestrzeni topologicznej to taka rodzina zbiorów otwartych, że każdy niepusty i otwarty podzbiór tej przestrzeni można wysumować przy pomocy pewnych (być może nieskończenie wielu) elementów bazy. W praktyce matematycznej związanej z badaniem własności konkretnych przestrzeni topologicznych, istotnym zagadnieniem jest pytanie o minimalną moc bazy przestrzeni (zob. ciężar przestrzeni poniżej). Tak zdefiniowane pojęcie nosi też czasem nazwę bazy otwartej (zob. też baza domknięta poniżej). Pojęcia pokrewne pojęciu bazy przestrzeni topologicznej to, na przykład, π-baza, podbaza czy pseudobaza.Zbiór pusty - zbiór, który nie zawiera żadnych elementów. W teorii mnogości ZF, będącej najpopularniejszą aksjomatyką współczesnej matematyki, istnienie zbioru pustego postuluje aksjomat zbioru pustego, natomiast aksjomat ekstensjonalności gwarantuje jego jedyność. Zbiór pusty oznaczany jest zwykle symbolami ∅ {displaystyle varnothing } , ∅ {displaystyle emptyset } , ∅ bądź {}.


    Podstrony: [1] 2 [3]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Część wspólna zbiorów A i B (przekrój, iloczyn mnogościowy, przecięcie zbiorów) – zbiór, który zawiera te i tylko te elementy, które należą jednocześnie do zbioru A i do zbioru B. Część wspólną definiuje się także dla dowolnych niepustych rodzin zbiorów.

    Reklama

    Czas generowania strony: 0.005 sek.