Modelowanie molekularne

Z Wikipedii, wolnej encyklopedii
Przejdź do nawigacji Przejdź do wyszukiwania

Modelowanie molekularne – zbiór technik obliczeniowych, które służą do modelowania i przewidywania właściwości cząsteczek lub układów ponadcząsteczkowych.

Lek – każda substancja, niezależnie od pochodzenia (naturalnego lub syntetycznego), nadająca się do bezpośredniego wprowadzana do organizmu w odpowiedniej postaci farmaceutycznej w celu osiągnięcia pożądanego efektu terapeutycznego, lub w celu zapobiegania chorobie, często podawana w ściśle określonej dawce. Lekiem jest substancja modyfikująca procesy fizjologiczne w taki sposób, że hamuje przyczyny lub objawy choroby, lub zapobiega jej rozwojowi. Określenie lek stosuje się też w stosunku do substancji stosowanych w celach diagnostycznych (np. metoklopramid w diagnostyce hiperprolaktynemii) oraz środków modyfikujących nie zmienione chorobowo funkcje organizmu (np. środki antykoncepcyjne).Komputer (z ang. computer od łac. computare – liczyć, sumować; dawne nazwy używane w Polsce: mózg elektronowy, elektroniczna maszyna cyfrowa, maszyna matematyczna) – maszyna elektroniczna przeznaczona do przetwarzania informacji, które da się zapisać w formie ciągu cyfr albo sygnału ciągłego.

Modelowanie molekularne nierozłącznie jest związane z komputerami, których moc obliczeniowa decyduje o dokładności wykonywanych symulacji rozmaitych zjawisk na poziomie pojedynczych cząsteczek. W układach o dużej złożoności stosuje się uproszczone założenia lub wychodzi się z pewnych założeń początkowych, wynikających z wcześniejszych danych eksperymentalnych. Ośrodki naukowe zaangażowane w modelowanie molekularne posiadają własne centra komputerowe lub korzystają z czasu, jaki jest im przydzielony na superkomputerach należących do innych.

BALLView to graficzny program do modelowania molekularnego. Jest dostępny na zasadach GPL dla Linuksa i innych OS. Pełni też funkcję otwartego środowiska wizualizacyjno programowego.Mechanika molekularna to metoda chemii obliczeniowej wykorzystującą mechanikę klasyczną do modelowania układów molekularnych. Energia potencjalna każdego rozpatrywanego systemu jest wyznaczana za pomocą odpowiedniego pola siłowego. Mechanika molekularna może zostać użyta zarówno do badania prostych cząsteczek jak i złożonych biomolekuł oraz układów nanotechnologicznych zbudowanych z milionów atomów.

Modelowanie molekularne znajduje m.in. zastosowanie w nanotechnologii, do projektowania leków, poznawania struktur biologicznych, których sekwencja jest znana a budowa i funkcja jeszcze nie, w badaniach materiałowych i w wielu innych miejscach.

Istnieją również projekty związane z modelowaniem molekularnym, które wykorzystują moce spontanicznie tworzonych przez wolontariuszy sieci obliczeń rozproszonych, np. projekt [email protected], zajmujący się między innymi poszukiwaniem nowych leków przeciwnowotworowych czy [email protected], w podobnych celach symulujący zwijanie białek.

Nanotechnologia – ogólna nazwa całego zestawu technik i sposobów tworzenia rozmaitych struktur o rozmiarach nanometrycznych, czyli na poziomie pojedynczych atomów i cząsteczek. Rozmiary nanometryczne nie są jednoznacznie zdefiniowane. Powszechnie znany przedział 1,5 - 100 nm nie znajduje potwierdzenia praktycznego. Obecnie uważa się iż granice rozmiarów nanometrycznych leżą tam, gdzie rozmiar struktury koreluje z właściwościami fizycznymi materiału.Zwijanie białka, nazywane także fałdowaniem białka to proces fizyczny polegający na formowaniu przez polipeptyd (posiadający strukturę kłębka statystycznego) wysoko zorganizowanej struktury o charakterystycznej i stabilnej konformacji.

Molekularne modelowanie jest rutynowo stosowane do poznawania struktury dynamiki i termodynamiki rozmaitych związków chemicznych. W biologii molekularnej przy użyciu modelowania molekularnego badano zwijanie białka, katalizę enzymów, stabilność białek, cząsteczkowe rozróżnianie powierzchni białek i DNA. Intensywnie rozwijane są kierunki poszukiwań metod i materiałów nanotechnologicznych.

Enzymy – wielkocząsteczkowe, w większości białkowe, katalizatory przyspieszające specyficzne reakcje chemiczne poprzez obniżenie ich energii aktywacji.[email protected] jest projektem internetowym zorganizowanym przez Stanford University w Stanach Zjednoczonych. Projekt ma na celu badanie procesów zwijania białek, koncentruje się na badaniu sposobu w jaki cząsteczka białka składa się w przestrzeni. Jest to o tyle ważne, że od tego kształtu zależą funkcje, jakie może ona pełnić w organizmie. Na skutek nieprawidłowego złożenia się cząstki, mogą powstawać białka wywołujące choroby takie jak: CJD, choroba Alzheimera, choroba Parkinsona, czy też słynne BSE, czyli "choroba szalonych krów".

Programy używane w MM[ | edytuj kod]

GPL-podobne
  • BALLView
  • Ghemical
  • ArgusLab
  • open source
  • MMTK
  • PSI3
  • komercyjne
  • Gaussian
  • HyperChem
  • PCMODEL
  • Cerius2
  • InsightII
  • Molsoft ICM
  • PyMOL
  • VMD
  • GROMOS
  • Sirius
  • NOCH
  • Sybyl
  • MOE
  • Agile Molecule
  • SPARTAN
  • Millsian


  • Podstrony: 1 [2] [3]




    Warto wiedzieć że... beta

    [email protected] - projekt przetwarzania rozproszonego platformy BOINC. Jego celem jest określenie kształtu (konkretnie struktury trzeciorzędowej), jaki białko uzyska wskutek składania się w naturze, poprzez znalezienie złożenia o najniższej energii.
    Badania materiałowe – interdyscyplinarny obszar badań naukowo-technicznych, w którym jest prowadzona analiza wpływu chemicznej i fizycznej struktury materiałów na ich właściwości elektryczne, mechaniczne, optyczne, powierzchniowe, chemiczne, magnetyczne i termiczne (także rozmaite kombinacje tych właściwości) oraz są opracowywane sposoby wytwarzania materiałów o pożądanych właściwościach.
    Kwas deoksyrybonukleinowy (dawn. kwas dezoksyrybonukleinowy; akronim: DNA, z ang. deoxyribonucleic acid) – wielkocząsteczkowy organiczny związek chemiczny należący do kwasów nukleinowych. U eukariontów zlokalizowany jest przede wszystkim w jądrach komórek, u prokariontów bezpośrednio w cytoplazmie, natomiast u wirusów w kapsydach. Pełni rolę nośnika informacji genetycznej organizmów żywych.
    Termodynamika – nauka o energii, dział fizyki zajmujący się badaniem energetycznych efektów wszelkich przemian fizycznych i chemicznych, które wpływają na zmiany energii wewnętrznej analizowanych układów. Wbrew rozpowszechnionym sądom termodynamika nie zajmuje się wyłącznie przemianami cieplnymi, lecz także efektami energetycznymi reakcji chemicznych, przemian z udziałem jonów, przemianami fazowymi, a nawet przemianami jądrowymi i energią elektryczną.
    Obliczenia rozproszone (ang. distributed computing) – obliczenia, umożliwiające współdzielenie zasobów obliczeniowych, często rozproszonych geograficznie.
    Dynamika molekularna (MD) - numeryczne rozwiązywanie i komputerowa symulacja przestrzeni fazowej dla modelu układu molekuł. Elementarne poprzez całkowanie równań ruchu Newtona lub kompleksowo z uwzględnieniem licznych oddziaływań w celu uzyskania informacji o właściwościach zależnych od czasu. Oddziaływania między elementami układu są opisywane przez pewną funkcję oraz zespół parametrów dla tej funkcji.
    MMTK Akronim od en Molecular Modelling Toolkit to zestaw narzędzi programowych do modelowania molekularnego. MMTK jest to oprogramowanie open source z wiodącym językiem Python, do wspomagania powszechnych działań w modelowaniu cząsteczek.

    Reklama