Moc zbioru

Z Wikipedii, wolnej encyklopedii
Przejdź do nawigacji Przejdź do wyszukiwania

Moc zbioru, liczba kardynalna – uogólnienie pojęcia liczebności zbioru na dowolne zbiory, także nieskończone. Moc zbioru liczb naturalnych oznacza się symbolem (czytanym alef zero z hebrajską literą alef i indeksem).

Liczba algebraiczna to liczba rzeczywista (ogólniej zespolona), która jest pierwiastkiem pewnego niezerowego wielomianu o współczynnikach wymiernych (a więc i całkowitych).Biblioteka Narodowa (BN) – polska biblioteka narodowa w Warszawie, na Ochocie, na Polu Mokotowskim, narodowa instytucja kultury założona w 1928.

Pojęcie mocy zbioru opiera się na pojęciu równoliczności dwóch zbiorów: zbiory i są równoliczne, gdy istnieje bijekcja (funkcja różnowartościowa i „na”) między zbiorami i Obrazowo mówiąc, gdy każdy element zbioru można połączyć w parę z dokładnie jednym elementem zbioru i odwrotnie. Łączenie elementów w pary jest jedynym sposobem „porównania” zbiorów nieskończonych, nie można – tak jak dla zbiorów skończonych – policzyć elementów obu zbiorów.

Twierdzenie Zermela – twierdzenie matematyczne mówiące o tym, że każdy zbiór daje się dobrze uporządkować. Spotyka się również inną nazwę tego twierdzenia, bardziej oddającą jego treść: twierdzenie o dobrym uporządkowaniu. Twierdzenie to jest równoważne pewnikowi wyboru; korzysta się z niego w dowodzie lematu Kuratowskiego-Zorna.Kurt Gödel (ur. 28 kwietnia 1906 w Brnie, zm. 14 stycznia 1978 w Princeton) – austriacki logik i matematyk, autor twierdzeń z zakresu logiki matematycznej, współautor jednej z aksjomatyk teorii mnogości. Do najbardziej znanych osiągnięć matematycznych Gödla należą twierdzenia o niezupełności i niesprzeczności teorii dedukcyjnych, które obejmują arytmetykę liczb naturalnych.

Zbiory mają tę samą moc wtedy i tylko wtedy, gdy są równoliczne.

Moc zbioru skończonego -elementowego jest równa moc zbioru nieskończonego jest nieskończoną liczbą kardynalną.

Georg Cantor, twórca teorii mnogości, określał moc zbioru jako tę własność, którą otrzymamy abstrahując od charakteru elementów zbioru i ich wzajemnych relacji takich, jak np. uporządkowanie.

Podzbiór – pewna „część” danego zbioru, czyli dla danego zbioru, nazywanego nadzbiorem, zbiór składający się z pewnej liczby jego elementów, np. żadnego, jednego, wszystkich. Pierwszy przypadek nazywa się podzbiorem pustym, drugi – podzbiorem jednoelementowym lub singletonem, trzeci – podzbiorem niewłaściwym.Regularna liczba kardynalna – nieskończona liczba kardynalna, która nie może być przedstawiona jako suma mniej niż κ zbiorów mocy mniejszej niż κ. Nieskończone liczby kardynalne które nie są regularne nazywamy liczbami singularnymi.

Oznaczenia[ | edytuj kod]

Moc zbioru oznacza się symbolem Wprawdzie tym samym symbolem oznacza się wartość bezwzględną liczby rzeczywistej i moduł liczby zespolonej, ale jego znaczenie zazwyczaj jednoznacznie wynika z kontekstu.

Liczby całkowite – liczby naturalne dodatnie N + = { 1 , 2 , 3 , … } {displaystyle mathbb {N} _{+}={1,2,3,dots }} oraz liczby przeciwne do nich { − 1 , − 2 , − 3 , … } {displaystyle {-1,-2,-3,dots }} , a także liczba zero. Uogólnieniem liczb całkowitych są liczby wymierne i tym samym liczby rzeczywiste, szczególnym przypadkiem liczb całkowitych są: liczby naturalne.Relacja równoważności – zwrotna, symetryczna i przechodnia relacja dwuargumentowa określona na pewnym zbiorze utożsamiająca ze sobą w pewien sposób jego elementy, co ustanawia podział tego zbioru na rozłączne podzbiory według tej relacji. Podobnie każdy podział zbioru niesie ze sobą informację o pewnej relacji równoważności.

Stosuje się również oznaczenia lub

Aksjomat wyboru (ozn. AC od ang. Axiom of Choice) – jeden z aksjomatów teorii mnogości mówiący o możliwości skonstruowania zbioru (nazywanego selektorem) zawierającego dokładnie po jednym elemencie z każdego zbioru należącego do rodziny niepustych zbiorów rozłącznych.PMID (ang. PubMed Identifier, PubMed Unique Identifier) – unikatowy identyfikator przypisany do każdego artykułu naukowego bazy PubMed.

Przykłady[ | edytuj kod]

Zbiory skończone[ | edytuj kod]

Dla zbioru skończonego, to znaczy niebędącego równolicznym z żadnym swoim podzbiorem właściwym, jego liczbą kardynalną jest liczba elementów należących do tego zbioru.

Zbiory nieskończone przeliczalne[ | edytuj kod]

Zbiory nieskończone przeliczalne, tj. takie, które są równoliczne ze zbiorem liczb naturalnych

  • Zbiór parzystych liczb naturalnych jest równoliczny ze zbiorem wszystkich liczb naturalnych – funkcja wzajemnie jednoznaczna może być opisana, na przykład jako ciąg par {(2,1), (4,2), (6,3), (8,4), ...}
    Podobnie zbiór nieparzystych liczb naturalnych jest równoliczny ze zbiorem wszystkich liczb naturalnych.
  • Zbiór liczb pierwszych jest równoliczny ze zbiorem liczb naturalnych (argumentacja podobna jak wyżej)
  • Zbiór liczb naturalnych jest równoliczny ze zbiorem liczb całkowitych. Funkcja wzajemnie jednoznaczna między tymi zbiorami może być opisana, na przykład, w postaci ciągu: {(1,0), (2,1), (3,−1), (4,2), (5,−2), (6,3), (7,−3)...}
  • Zbiór liczb wymiernych jest równoliczny ze zbiorem liczb naturalnych. Niech każdemu ułamkowi odpowiada punkt o współrzędnych (x, y) w kartezjańskim układzie współrzędnych na płaszczyźnie, gdzie x i y są całkowite. Funkcję wzajemnie jednoznaczną można skonstruować numerując „spiralnie” punkty o współrzędnych całkowitych kolejnymi liczbami naturalnymi: (0, 0), (1, 0), (1, −1), (0, −1), (−1, −1), (−1, 0), (−1, 1), (0, 1), (1, 1), (2, 1), (2, 0), (2, −1)..., przy czym numerujemy tylko te punkty (x,y), które współrzędną mają dodatnią i zarazem ułamek jest nieskracalny.
  • Zbiór liczb algebraicznych także jest przeliczalny (nieskończony).
  • Można wykazać, że dla każdego zbioru nieskończonego istnieje funkcja różnowartościowa ze zbioru liczb naturalnych na jego właściwy podzbiór. To oznacza, że moc zbioru liczb naturalnych jest najmniejszą spośród mocy zbiorów nieskończonych. Liczbę kardynalną odpowiadającą mocy zbioru liczb naturalnych oznacza się hebrajską literą alef z indeksem 0: (alef zero).

    Hipoteza continuum (skr. CH, od ang. continuum hypothesis) – postawiona przez Georga Cantora hipoteza teorii mnogości dotycząca mocy zbiorów liczb naturalnych i liczb rzeczywistych.Liczby naturalne – liczby służące podawaniu liczności (trzy osoby, zob. liczebnik główny/kardynalny) i ustalania kolejności (trzecia osoba, zob. liczebnik porządkowy), poddane w matematyce dalszym uogólnieniom (odpowiednio: liczby kardynalne, liczby porządkowe). Badaniem własności liczb naturalnych zajmują się arytmetyka i teoria liczb. Według finitystów, zwolenników skrajnego nurtu filozofii matematyki, są to jedyne liczby, jakimi powinna zajmować się matematyka - słynne jest stwierdzenie propagatora arytmetyzacji wszystkich dziedzin matematyki Leopolda Kroneckera: Liczby całkowite stworzył dobry Bóg. Reszta jest dziełem człowieka.

    Zbiory nieprzeliczalne[ | edytuj kod]

    Zbiorami nieprzeliczalnymi nazywa się zbiory nieskończone, które nie są przeliczalne. Georg Cantor wykazał, że przedział [0,1] jest równoliczny ze zbiorem liczb rzeczywistych, a następnie, używając metody przekątniowej, udowodnił, że moc przedziału [0,1] (równa mocy zbioru liczb rzeczywistych) jest większa od mocy zbioru liczb naturalnych. Liczbę kardynalną określającą moc zbioru liczb rzeczywistych oznacza się symbolem lub Można wykazać, że liczb rzeczywistych jest dokładnie tyle, ile podzbiorów zbioru liczb naturalnych, to znaczy zbiór potęgowy zbioru liczb naturalnych, oznaczany symbolem lub jest równoliczny ze zbiorem liczb rzeczywistych (uzasadnia to drugi z wprowadzonych symboli).

    Funkcja „na” a. surjekcja pisane też czasami jako suriekcja – funkcja przyjmująca jako swoje wartości wszystkie elementy przeciwdziedziny, tj. której obraz jest równy przeciwdziedzinie.Ernst Friedrich Ferdinand Zermelo (ur. 27 lipca 1871 w Berlinie, zm. 21 maja 1953 we Fryburgu Bryzgowijskim) – niemiecki matematyk.

    W pracy z roku 1906 Gerhard Hessenberg udowodnił twierdzenie (nazwane przez Ernsta Zermela twierdzeniem Cantora), które mówi, że Jeśli jest dowolnym zbiorem, a jest jego zbiorem potęgowym, to znaczy rodziną wszystkich jego podzbiorów, to nie istnieje funkcja różnowartościowa ze zbioru w zbiór

    Innymi słowy, zbiór potęgowy danego zbioru jest zawsze większy w sensie mocy od samego zbioru Powyższe twierdzenie może służyć jako maszyna do produkowania zbiorów coraz większej mocy – wychodząc od zbioru liczb naturalnych zbiory są coraz większe w sensie mocy. Innym klasycznym twierdzeniem teorii mnogości, które – w pewnym sensie – mówi o tym, że istnieje nieskończenie wiele rodzajów nieskończoności jest twierdzenie Hartogsa.

    Alef – pierwsza litera alfabetów semickich, m.in. fenickiego, aramejskiego, arabskiego, hebrajskiego, syryjskiego, odpowiadająca liczbie 1.Skala betów – rosnący ciągły ciąg liczb kardynalnych indeksowany wszystkimi liczbami porządkowymi, w którym każdy kolejny wyraz jest mocą zbioru wszystkich podzbiorów wyrazu poprzedniego.


    Podstrony: 1 [2] [3] [4]




    Warto wiedzieć że... beta

    Aksjomaty Zermela-Fraenkla, aksjomatyka Zermela-Fraenkla, w skrócie: aksjomaty(ka) ZF – powszechnie przyjmowany układ aksjomatów teorii mnogości zaproponowany przez Ernsta Zermela w 1904 roku i później uzupełniony przez Abrahama Fraenkla.
    Paul Joseph Cohen (ur. 2 kwietnia 1934 w Long Branch, w stanie New Jersey, w USA; zm. 23 marca 2007, Stanford, Kalifornia) − amerykański matematyk, od 1964 prof. Stanford University.
    Zbiór skończony − zbiór o skończonej liczbie elementów. Nieujemną liczbę naturalną określającą ilość elementów zbioru skończonego nazywa się mocą zbioru. Zbiór skończony ma moc skończoną. Najmniejszym zbiorem skończonym jest zbiór pusty  Ø.
    Paradoks zbioru wszystkich zbiorów – paradoks tzw. "naiwnej" teorii mnogości odkryty w 1899 przez Cantora. Przykład antynomii logicznej (syntaktycznej) tzn. antynomii wynikającej z nie dość precyzyjnego używania pojęć teorii.
    Twierdzenie Hartogsa - twierdzenie w teorii mnogości ZF (bez aksjomatu wyboru), udowodnione w 1915 roku przez niemieckiego matematyka, Friedricha Hartogsa, mówiące, że
    Układ współrzędnych kartezjańskich (prostokątny) – prostoliniowy układ współrzędnych o parach prostopadłych osi. Nazwa pojęcia pochodzi od łacińskiego nazwiska francuskiego matematyka i filozofa Kartezjusza (wł. René Descartes), który wprowadził te idee w 1637 w traktacie La Géométrie, (wcześniej układ taki stosował, choć nie rozpropagował go, Pierre de Fermat).
    Teoria pcf – dział teorii mnogości blisko związany z arytmetyką liczb kardynalnych. Skrót pcf pochodzi od angielskiego zwrotu possible cofinalities (możliwe współkońcowości), który odzwierciedla jeden z centralnych obiektów rozważanych w tej teorii – zbiór współkońcowości pewnych zredukowanych porządków produktowych.

    Reklama