• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Miejsce zerowe

    Przeczytaj także...
    Wielomian – wyrażenie algebraiczne złożone ze zmiennych i stałych połączonych działaniami dodawania, odejmowania, mnożenia i podnoszenia do potęgi o stałym wykładniku naturalnym.Wykres funkcji – potocznie graficzne przedstawienie funkcji. Ogólniej, w matematyce wykresem funkcji f : X → Y {displaystyle f:X o Y} , gdzie X {displaystyle X} i Y {displaystyle Y} są dowolnymi zbiorami, nazywamy podzbiór S ⊂ X × Y {displaystyle Ssubset X imes Y} dany wzorem:
    Odcięta (łac. abscissa) – pierwsza współrzędna w kartezjańskim układzie współrzędnych (zwanym też prostokątnym układem współrzędnych). Oznaczana jest przeważnie symbolem x, a jej oś symbolem OX.

    Miejsce zerowe – argument funkcji, dla którego przyjmuje ona wartość zerową. Czasem miejsce zerowe nazywa się w skrócie zerem funkcji bądź jej pierwiastkiem.

    Oś współrzędnych - oś liczbowa wykorzystywana do budowy układu współrzędnych, pozwalająca na jednoznaczne określenie położenia punktu przez określenie jego współrzędnych.Układ współrzędnych kartezjańskich (prostokątny) – prostoliniowy układ współrzędnych o parach prostopadłych osi. Nazwa pojęcia pochodzi od łacińskiego nazwiska francuskiego matematyka i filozofa Kartezjusza (wł. René Descartes), który wprowadził te idee w 1637 w traktacie La Géométrie, (wcześniej układ taki stosował, choć nie rozpropagował go, Pierre de Fermat).

    W przypadku funkcji rzeczywistej zmiennej rzeczywistej przedstawionej w układzie współrzędnych kartezjańskich interpretacją geometryczną miejsca zerowego jest odcięta punktu należącego do wykresu danej funkcji, który leży zarazem na osi odciętych.

    Funkcja (łac. functio, -onis, „odbywanie, wykonywanie, czynność”) – dla danych dwóch zbiorów X i Y przyporządkowanie każdemu elementowi zbioru X dokładnie jednego elementu zbioru Y. Oznacza się ją na ogół f, g, h itd.

    Przypisy[ | edytuj kod]

    1. Uogólniając definicję pierwiastka wielomianu – o wzajemnej odpowiedniości pierwiastków wielomianu i miejsc zerowych stowarzyszonej z nim funkcji wielomianowej mówi twierdzenie Bézouta.




    Reklama

    Czas generowania strony: 0.734 sek.