Miara Diraca

Z Wikipedii, wolnej encyklopedii
Przejdź do nawigacji Przejdź do wyszukiwania

Miara Diracamiara, która zbiorowi (mierzalnemu) przestrzeni mierzalnej przypisuje wartość 1, jeżeli zawiera ustalony punkt należący do w przeciwnym wypadku miara Diraca zbioru wynosi 0.

Przestrzeń probabilistyczna – struktura umożliwiająca modelowanie doświadczenia losowego poprzez wskazanie zdarzeń losowych i przypisanie im prawdopodobieństwa.Przestrzeń T 1 {displaystyle T_{1}} – termin topologiczny odnoszący się do jednego ze słabszych aksjomatów oddzielania. Dawniej przestrzenie spełniające ten warunek były nazywane też przestrzeniami Frécheta, ale wydaje się, że dzisiaj ta druga nazwa jest używana głównie w innym znaczeniu.

Definicja[ | edytuj kod]

Diagram pokazuje wszystkie podzbiory zbioru Miara Diraca przyjmuje wartość 1 dla podzbiorów zawierających element zaś wartość 0 dla pozostałych podzbiorów

Jeżeli jest przestrzenią mierzalną oraz jest elementem przestrzeni to miarą Diraca skoncentrowaną w punkcie nazywa się miarę taką, że dla dowolnego zbioru mierzalnego

Miary wzajemnie osobliwe – określone na tej samej przestrzeni mierzalnej miary, które są skupione na rozłącznych podzbiorach przestrzeni. Miarę borelowską na przestrzeni euklidesowej nazywa się osobliwą, gdy jest osobliwa względem miary Lebesgue’a. Całka Lebesgue’a – konstrukcja matematyczna rozszerzająca pojęcie całki Riemanna na szerszą klasę funkcji, wprowadzona w 1902 r. przez francuskiego matematyka Henriego Lebesgue’a. Rozszerzenie dotyczy także dziedziny, na której mogą być określone funkcje podcałkowe.

Miara Diraca jest miarą probabilistyczną.

Miara – rozważana w matematyce funkcja służąca określeniu „wielkości” zbiorów poprzez przypisanie im pewnej nieujemnej liczby.Teoria dystrybucji – dział matematyki leżący na pograniczu analizy funkcjonalnej i teorii funkcji rzeczywistych powstały w XX wieku, głównie za sprawą prac francuskiego matematyka Laurenta Schwartza. Zasadniczą ideą tej teorii jest pewne uogólnienie pojęcia funkcji (rzeczywistej) nazywane właśnie dystrybucją, które z punktu widzenia wyjściowej teorii nie ma własności przynależnych dobrze określonym funkcjom (np. na ogół dystrybucje nie mają „wartości w punkcie”), to z drugiej strony mają one doskonałe własności analityczne, m.in. mają pochodne dowolnego rzędu. Operowanie tego rodzaju obiektami odbiega od klasycznego, częstokroć korzysta się z transformaty Fouriera, czy splotu. Metody dystrybucyjne znajdują zastosowanie w teorii równań różniczkowych dając opis uogólnionych ich rozwiązań; dzięki temu doskonale nadają się one do opisu wielu skomplikowanych układów fizycznych.

Nazwa miary pochodzi od funkcji delta Diraca, będącej dystrybucją na prostej rzeczywistej (miary można uważać za specjalny rodzaj dystrybucji). Dla miary Diraca i dowolnej funkcji mierzalnej na zachodzi tożsamość:

Zbiór borelowski – podzbiór przestrzeni topologicznej, który można uzyskać za pomocą przeliczalnych sum i przekrojów zbiorów domkniętych (bądź zwartych) tej przestrzeni. Klasa zbiorów uzyskanych za pomocą tych operacji tworzy σ-ciało nazywane σ-ciałem zbiorów borelowskich lub σ-ciałem borelowskim danej przestrzeni topologicznej. Nazwa została wprowadzona dla uhonorowania prac francuskiego matematyka Émile Borela, który pierwszy badał te zbiory i ich zastosowania.Miara Lebesgue’a (czyt. „lebega”) – pojęcie teorii miary formalizujące i uogólniające intuicje związane z takimi pojęciami (w zależności od wymiaru) jak długość, pole powierzchni czy objętość bryły. Historycznie pojęcie miary (nazywanej dziś miarą Lebesgue’a) pochodzi z pracy Henriego Lebesgue’a, dotyczącej rozszerzenia pojęcia całki na klasy funkcji określonych także na innych zbiorach niż przedziały domknięte (tzw. całka Lebesgue’a).

lub w równoważnej formie

Miara ściśle dodatnia – w teorii miary, dziale matematyki, miara, która „nigdzie nie znika” lub też „zeruje się tylko w punktach”.Zbiór liczb rzeczywistych – uzupełnienie zbioru liczb wymiernych. Zbiór liczb rzeczywistych zawiera m.in. liczby naturalne, ujemne, całkowite, pierwiastki liczb dodatnich, wymierne, niewymierne, przestępne, itd. Z drugiej strony na liczby rzeczywiste można też patrzeć jak na szczególne przypadki liczb zespolonych.

Powyższa tożsamość jest często używana w definicji delty Diraca; używa się jej także w całce Lebesque’a.

Miara lokalnie skończona – miara określona na σ-ciele podzbiorów przestrzeni topologicznej zawierającym wszystkie zbiory otwarte (tzn. σ-ciele przynajmniej tak bogatym jak σ-ciało borelowskie) o tej własności, że każdy punkt przestrzeni ma otoczenie skończonej miary.Miara wewnętrznie regularna – w matematyce miara, dla której miara zbioru może być przybliżana od dołu przez podzbiory zwarte.

Własności[ | edytuj kod]

Niech oznacza miarę Diraca określoną w pewnym punkcie przestrzeni mierzalnej

Przestrzeń T 0 {displaystyle T_{0}} to termin w topologii opisujący najsłabszy z aksjomatów oddzielania. Przestrzenie T 0 {displaystyle T_{0}} są też nazywane przestrzeniami Kołmogorowa jako że zostały one wprowadzone przez rosyjskiego matematyka Andrieja Kołmogorowa.Delta Diraca – dystrybucja, czyli funkcjonał liniowy i ciągły na przestrzeni D {displaystyle {mathcal {D}}} funkcji próbnych, tzn. wszystkich funkcji klasy C ∞ ( R N ) {displaystyle C^{infty }(mathbb {R} ^{N})} o zwartych nośnikach, dany wzorem
  • jest miarą probabilistyczną (w szczególności jest miarą skończoną).
  • Niech będzie przestrzenią topologiczną, a będzie σ-ciałem podzbiorów zawierającym wszystkie borelowskie podzbiory oraz niech jest miarą Diraca skoncentrowaną w pewnym punkcie przestrzeni

    Nośnik miary jest pojęciem analogicznym do pojęcia nośnika funkcji. Nie jest to jednak podzbiór σ-algebry, na której miara jest określona, lecz podzbiór przestrzeni, w której jest ona zdefiniowana. Dla rozkładów prawdopodobieństwa nośnikiem miary jest zbiór wszystkich wartości, które może przyjąć zmienna losowa.
  • Miara Diraca jest miarą ściśle dodatnią wtedy i tylko wtedy, gdy jest przestrzenią typu T0.
  • Miara Diraca, jako miara skończona, jest w szczególności lokalnie skończona.
  • Miara Diraca jest wewnętrzną regularna: wszystkie zbiory jednoelementowe są zwarte. W szczególności miary Diraca są miarami Radona.
  • Jeśli zbiór jest domknięty w topologii to jest on nośnikiem miary (w przeciwnym przypadku nośnikiem jest domknięcie zbioru w rozważanej topologii). Miary Diraca (na przestrzeniach typu T1) są jedynymi miarami probabilistycznymi o jednopunktowym nośniku.
  • Jeżeli jest -wymiarową przestrzenią euklidesową z -algebrą zbiorów borelowskich oraz -wymiarową miarą Lebesgue’a to jest miarą osobliwą względem gdzie
  • oraz




    Reklama