Liczby wymierne

Z Wikipedii, wolnej encyklopedii
Przejdź do nawigacji Przejdź do wyszukiwania

Liczby wymierneliczby, które można zapisać w postaci ilorazu dwóch liczb całkowitych, w którym dzielnik jest różny od zera. Są to więc liczby, które można przedstawić za pomocą ułamka zwykłego. Zbiór liczb wymiernych oznaczany jest zazwyczaj symbolem Wobec tego:

Relacja równoważności – zwrotna, symetryczna i przechodnia relacja dwuargumentowa określona na pewnym zbiorze utożsamiająca ze sobą w pewien sposób jego elementy, co ustanawia podział tego zbioru na rozłączne podzbiory według tej relacji. Podobnie każdy podział zbioru niesie ze sobą informację o pewnej relacji równoważności.Liczby naturalne – liczby służące podawaniu liczności (trzy osoby, zob. liczebnik główny/kardynalny) i ustalania kolejności (trzecia osoba, zob. liczebnik porządkowy), poddane w matematyce dalszym uogólnieniom (odpowiednio: liczby kardynalne, liczby porządkowe). Badaniem własności liczb naturalnych zajmują się arytmetyka i teoria liczb. Według finitystów, zwolenników skrajnego nurtu filozofii matematyki, są to jedyne liczby, jakimi powinna zajmować się matematyka - słynne jest stwierdzenie propagatora arytmetyzacji wszystkich dziedzin matematyki Leopolda Kroneckera: Liczby całkowite stworzył dobry Bóg. Reszta jest dziełem człowieka.

Liczby wymierne są szczególnym przypadkiem liczb rzeczywistych. Liczbę rzeczywistą, która nie jest wymierna nazywamy liczbą niewymierną. Szczególnym przypadkiem liczb wymiernych są m.in. liczby całkowite i liczby naturalne.

Pierścień – struktura formalizująca własności algebraiczne liczb całkowitych oraz arytmetyki modularnej; intuicyjnie zbiór, którego elementy mogą być bez przeszkód dodawane, odejmowane i mnożone, lecz niekoniecznie dzielone. Badanie pierścieni umożliwiło uogólnienie innych pojęć matematycznych takich, jak np. liczby pierwsze (przez ideały pierwsze), wielomiany, ułamki oraz rozwinięcie teorii podzielności i wskazania przy tym najogólniejszej struktury, w której możliwe jest stosowanie algorytmu Euklidesa (tzw. pierścień Euklidesa). Dział matematyki opisujący te struktury nazywa się teorią pierścieni.Library of Congress Control Number (LCCN) – numer nadawany elementom skatalogowanym przez Bibliotekę Kongresu wykorzystywany przez amerykańskie biblioteki do wyszukiwania rekordów bibliograficznych w bazach danych i zamawiania kart katalogowych w Bibliotece Kongresu lub u innych komercyjnych dostawców.

Liczby wymierne tworzą ciało ułamków pierścienia liczb całkowitych. Konstrukcję tę możemy przedstawić w następujący sposób:

Niech w zbiorze par liczb całkowitych których następnik jest różny od zera, dana będzie relacja równoważności

Liczba przestępna – liczba rzeczywista lub ogólniej zespolona z {displaystyle z,} , która nie jest pierwiastkiem żadnego niezerowego wielomianu jednej zmiennej o współczynnikach wymiernych, tzn. z {displaystyle z,} jest liczbą przestępną, gdy:Zbiór gęsty – zbiór, którego domknięcie jest całą przestrzenią. Równoważnie, zbiór jest gęsty, jeżeli ma z każdym niepustym zbiorem otwartym co najmniej jeden punkt wspólny. W przestrzeni metrycznej ( X , d ) {displaystyle (X,d)} zbiór D ⊂ X {displaystyle Dsubset X} nazywamy gęstym jeśli dla każdego x ∈ X {displaystyle xin X} i liczby ε > 0 {displaystyle varepsilon >0} istnieje element q ∈ D {displaystyle qin D} taki, że d ( x , q ) < ε {displaystyle d(x,q)<varepsilon } , tzn. dowolnie blisko każdego elementu x ∈ X {displaystyle xin X} znajduje się jakiś element z D {displaystyle D} .
wtedy i tylko wtedy, gdy

W zbiorze klas abstrakcji tej relacji określa się dwa działania

Działanie dwuargumentowe a. binarne – w algebrze działanie algebraiczne o argumentowości równej 2, czyli funkcja przypisująca dwóm elementom inny; wszystkie elementy mogą pochodzić z innych zbiorów.Biblioteka Narodowa Francji (fr. Bibliothèque nationale de France, BnF) – francuska biblioteka narodowa, znajdująca się w Paryżu. Przewidziana jest jako repozytorium dla wszystkich materiałów bibliotecznych, wydawanych we Francji. Obecnym dyrektorem Biblioteki jest Bruno Racine.
  • Parę zapisuje się zwykle w postaci ułamka bądź jeśli to parę tę utożsamia się po prostu z liczbą

    Zbiór – pojęcie pierwotne teorii zbiorów (znanej szerzej jako teoria mnogości; za jej twórcę uważa się Georga Cantora) leżące u podstaw całej matematyki; intuicyjnie jest to nieuporządkowany zestaw różnych obiektów, czy też kolekcja niepowtarzających się komponentów bez wyróżnionej kolejności.Liczby niewymierne – liczby rzeczywiste nie będące liczbami wymiernymi, czyli takie liczby rzeczywiste których nie można zapisać w postaci ilorazu dwóch liczb: liczby całkowitej przez liczbę naturalną różną od zera.

    Własności[ | edytuj kod]

  • Liczby wymierne z dodawaniem, mnożeniem, zerem i jedynką określonymi w poprzedniej sekcji stanowią ciało.
  • W arytmetyce teoretycznej ciało liczb wymiernych definiuje się jako ciało ułamków pierścienia liczb całkowitych.
  • Zbiór liczb wymiernych jest równoliczny ze zbiorem liczb naturalnych, czyli jest to zbiór przeliczalny (co oznacza się ).
  • Jako podzbiór przestrzeni liczb rzeczywistych liczby wymierne są gęste w
  • Dla wykazania tej własności wystarczy udowodnić, że dla każdych istnieje liczba wymierna Dowód Gdyby były wymierne, to oczywiście spełnia tezę. Niech więc choć jedno spośród jest niewymierne.
  • Jeśli to można przyjąć
  • Jeśli to ponieważ jest ciałem archimedesowym, to wystarczy wskazać takie, że czyli
    Podobnie gdy wskazujemy i wówczas
  • Niech więc i niech np. jest niewymierne.
    Dla pewnego zachodzi stąd
    Z drugiej strony istnieje takie, że niech będzie najmniejszą liczbą naturalną o tej własności. Pokażemy, że Rzeczywiście, gdyby to byłoby Ponieważ równość nie może zachodzić (liczba niewymierna nie może być liczbą naturalną), więc wbrew temu, że jest najmniejszą liczbą wśród liczb naturalnych o własności
    Ostatecznie łącznie z warunkiem daje
  • czyli Jeśli jest niewymierne i wymierne, to wystarczy znaleźć takie, że i znaleźć jak poprzednio spełniające Wówczas i
  • Jeśli to wystarczy znaleźć jak w poprzednim punkcie spełniające i wówczas
  • Zobacz też[ | edytuj kod]

  • liczba
  • liczby niewymierne
  • liczby przestępne
  • ułamek egipski
  • Przypisy[ | edytuj kod]

    1. Liczby wymierne, [w:] Encyklopedia PWN [online] [dostęp 2021-07-21].
    Zbiór liczb rzeczywistych – uzupełnienie zbioru liczb wymiernych. Zbiór liczb rzeczywistych zawiera m.in. liczby naturalne, ujemne, całkowite, pierwiastki liczb dodatnich, wymierne, niewymierne, przestępne, itd. Z drugiej strony na liczby rzeczywiste można też patrzeć jak na szczególne przypadki liczb zespolonych.Wielka Encyklopedia Rosyjska (ros. Большая российская энциклопедия, БРЭ) – jedna z największych encyklopedii uniwersalnych w języku rosyjskim, wydana w 36 tomach w latach 2004–2017. Wydana przez spółkę wydawniczą o tej samej nazwie, pod auspicjami Rosyjskiej Akademii Nauk, na mocy dekretu prezydenckiego Władimira Putina nr 1156 z 2002 roku




    Warto wiedzieć że... beta

    Zbiór przeliczalny – intuicyjnie, zbiór którego elementy można ustawić w ciąg (skończony bądź nie), tzn. "wypisać je po kolei", "ponumerować". Istnieją dwie nierównoważne konwencje użycia terminu zbiór przeliczalny w matematyce:
    Hiszpańska Biblioteka Narodowa (Biblioteca Nacional de España) – największa biblioteka w Hiszpanii i jedną z największych na świecie. Znajduje się w Madrycie, a dokładnie przy Paseo de Recoletos.
    Kontrola autorytatywna – w terminologii bibliotekoznawczej określenie procedur zapewniających utrzymanie w sposób konsekwentny haseł (nazw, ujednoliconych tytułów, tytułów serii i haseł przedmiotowych) w katalogach bibliotecznych przez zastosowanie wykazu autorytatywnego zwanego kartoteką wzorcową.
    Ciało – struktura formalizująca własności algebraiczne liczb wymiernych, czy liczb rzeczywistych. W trakcie badań nad tymi obiektami rozwinął się aparat matematyczny (tzw. teoria Galois) umożliwiający rozwiązanie takich problemów jak rozwiązalność równań wielomianowych (jednej zmiennej) przez tzw. pierwiastniki (działania obowiązujące w ciałach i wyciąganie pierwiastków), czy wykonalność pewnych konstrukcji klasycznych (konstrukcji geometrycznych, w których dozwolone jest korzystanie z wyidealizowanych cyrkla i linijki). Działem matematyki zajmującym się opisem tych struktur jest teoria ciał.
    Liczba – pojęcie abstrakcyjne, jedno z najczęściej używanych w matematyce. Pierwotnie liczby służyły do porównywania wielkości zbiorów przedmiotów (liczby naturalne), później także wielkości ciągłych (miary i wagi), obecnie w matematyce są rozważane jako twory abstrakcyjne, w oderwaniu od ewentualnych fizycznych zastosowań.
    Gemeinsame Normdatei (GND) – kartoteka wzorcowa, stanowiąca element centralnego katalogu Niemieckiej Biblioteki Narodowej (DNB), utrzymywanego wspólnie przez niemieckie i austriackie sieci biblioteczne.

    Reklama