Aksjomaty i konstrukcje liczb

Z Wikipedii, wolnej encyklopedii
Przejdź do nawigacji Przejdź do wyszukiwania
Diagram Hassego przedstawiający zawieranie się zbiorów i ogólniej – klas liczbowych w sobie. Symbol oznacza tu, że można skonstruować klasę liczb tak, aby była podklasą klasy Zbiory umieszczone na rysunku powyżej liczb zespolonych noszą wspólną nazwę liczb hiperzespolonych. Na niebiesko oznaczone są rodzaje liczb które nie tworzą zbiorów, lecz klasy właściwe. Liczby algebraiczne całkowite nie są szczególnym przypadkiem liczb algebraicznych rzeczywistych – to nie jest pomyłka. Zobacz sekcję Liczby algebraiczne

Aksjomaty i konstrukcje liczb – metody ścisłego definiowania liczb używane w matematyce. Aksjomaty liczb to warunki, jakie muszą spełniać pewne obiekty oraz działania na nich, aby mogły być uznane za liczby danego rodzaju (np. liczby naturalne, liczby wymierne itp.). Konstrukcje liczb są algebrami, tak utworzonymi, aby spełniały właściwe danym liczbom aksjomaty.

Moc zbioru – własność zbioru, która opisuje jego liczebność. Nieformalnie, moc zbioru jest tym większa im większy jest zbiór. Pojęcie mocy zbioru opiera się na pojęciu równoliczności dwóch zbiorów – zbiory A i B są równoliczne, gdy każdy element zbioru A można połączyć w parę z dokładnie jednym elementem zbioru B, innymi słowy istnieje bijekcja (funkcja różnowartościowa i "na") między zbiorami A i B. Zbiory równoliczne mają tę samą moc. Moce zbiorów są konkretnymi obiektami matematycznymi, nazywanymi liczbami kardynalnymi.Diagram Hassego – graf skierowany przedstawiający częściowy porządek w zbiorze, w odpowiedni sposób przedstawiony graficznie.

Nie ma jednej uniwersalnej cechy odróżniającej wszystkie liczby od elementów algebr, które tak nie są nazywane. Matematycy nie definiują „liczb”, definiują „liczby naturalne”, „liczby całkowite”, „liczby rzeczywiste” itp.

O ile jednak nazwanie danego obiektu liczbą jest podyktowane bardziej tradycją niż ogólną definicją, to poszczególne rodzaje liczb są już ściśle określane. Definicje liczb stanowią pewną sekwencję (bardziej złożone algebry opierają się na prostszych), którą prezentuje niniejszy artykuł.

Spis treści

  • 1 Metody definiowania liczb
  • 1.1 Izomorfizm konstrukcji
  • 2 Liczby naturalne
  • 2.1 Aksjomatyka Peana
  • 2.2 Inne aksjomatyki
  • 2.3 Konstrukcja Fregego i Russella
  • 2.4 Konstrukcja von Neumanna
  • 2.5 Niektóre podzbiory liczb naturalnych
  • 3 Liczby całkowite
  • 3.1 Aksjomatyka liczb całkowitych
  • 3.2 Konstrukcja Grassmana liczb całkowitych
  • 3.3 Niektóre podzbiory liczb całkowitych
  • 4 Liczby wymierne
  • 4.1 Aksjomatyka liczb wymiernych
  • 4.2 Konstrukcja liczb wymiernych
  • 5 Liczby rzeczywiste
  • 5.1 Aksjomatyka liczb rzeczywistych
  • 5.2 Aksjomatyka Tarskiego
  • 5.3 Konstrukcja przy pomocy przekrojów Dedekinda
  • 5.4 Konstrukcja przy pomocy ciągów Cauchy’ego liczb wymiernych
  • 5.5 Niektóre podzbiory zbioru liczb rzeczywistych
  • 6 Liczby zespolone
  • 6.1 Aksjomatyka liczb zespolonych
  • 6.2 Konstrukcja Cayleya-Dicksona
  • 6.3 Płaszczyzna zespolona
  • 6.4 Liczby algebraiczne
  • 7 Kwaterniony
  • 7.1 Aksjomatyka kwaternionów
  • 7.2 Konstrukcja kwaternionów
  • 8 Oktoniony (oktawy Cayleya)
  • 9 Sedeniony
  • 10 Algebry Clifforda
  • 10.1 Konstrukcja przez użycie pierścienia ilorazowego
  • 11 Liczby p-adyczne
  • 11.1 Aksjomatyka liczb p-adycznych
  • 11.2 Konstrukcja liczb p-adycznych
  • 12 Liczby kardynalne
  • 13 Liczby porządkowe
  • 14 Liczby hiperrzeczywiste
  • 14.1 Aksjomatyka liczb hiperrzeczywistych
  • 14.2 Konstrukcja liczb hiperrzeczywistych
  • 15 Liczby nadrzeczywiste
  • 15.1 Aksjomatyka liczb nadrzeczywistych
  • 15.2 Konstrukcja liczb nadrzeczywistych
  • 15.3 Niektóre podklasy liczb nadrzeczywistych
  • 16 Uwagi
  • 17 Przypisy
  • 18 Bibliografia
  • Metody definiowania liczb[ | edytuj kod]

    Liczby mogą być definiowane na trzy sposoby:

    Wartość bezwzględna a. moduł – dla danej liczby rzeczywistej wartość liczbowa nieuwzględniająca znaku liczby. Przykładowo Parser nie mógł rozpoznać (Nie można zapisać obrazu z wzorem w systemie plików.): 5Metajęzyk – dowolny język służący do opisu innego języka. W skład metajęzyka wchodzą nazwy wyrażeń języka opisywanego, zazwyczaj tworzone jako nazwy cudzysłowowe, predykaty opisujące relacje sematyczne między wyrażeniami języka opisywanego a tym, do czego wyrażenia te się odnoszą (np. "oznacza", "denotuje"), pewne reguły znaczeniowe, reguły składniowe itp. W szczególności językiem badanym może być ten sam język, w którym przeprowadza się badania.
  • przez podanie aksjomatów, czyli właściwości, jakie muszą spełniać działania w pewnym zbiorze (klasie), aby struktura złożona z tego zbioru oraz działań mogła zostać uznana za algebrę liczbową.
  • przez stworzenie konstrukcji, czyli bezpośrednie utworzenie jakichś obiektów i nazwanie ich liczbami (jeśli dany rodzaj liczb posiada własną aksjomatykę, taka konstrukcja musi być modelem tej aksjomatyki, czyli wszystkie aksjomaty muszą być dla niej spełnione).
  • przez wydzielenie podzbioru spełniającego dany warunek z osobno zdefiniowanego szerszego zbioru liczb – jest to w zasadzie szczególny przypadek zarówno aksjomatyki, jak i konstrukcji.
  • Wśród mnogości pojęć mających w nazwie słowo „liczba” można wyróżnić:

    Ciąg Cauchy’ego – ciąg elementów przestrzeni metrycznej (np. zbioru liczb rzeczywistych) spełniających tzw. warunek Cauchy’ego. Nazwa pojęć pochodzi od nazwiska francuskiego matematyka, Augustina Cauchy’ego.Ideał maksymalny – w teorii pierścieni ideał, który jest maksymalny (względem zawierania zbiorów) wśród wszystkich ideałów właściwych danego pierścienia; innymi słowy jest to taki ideał właściwy, który nie zawiera się w żadnym innym ideale danego pierścienia.
  • zbiory liczb tworzące nietrywialną algebrędodawanie i mnożenie dowolnych dwóch liczb z takiego zbioru jest działaniem wewnętrznym, czyli zawsze daje wyniki z tego zbioru. Należą do tej grupy wszystkie (z wyjątkiem liczb przestępnych, przestępnych rzeczywistych i niewymiernych) rodzaje liczb pokazane na ilustracji z początku artykułu. Liczby te są definiowane za pomocą aksjomatów opisujących własności działań na nich, lub za pomocą konstrukcji. Jeśli jakieś zbiory liczbowe tworzą algebrę i zawierają podzbiór również tworzący algebrę, to działania na liczbach z tego podzbioru muszą dawać w obydwu algebrach identyczne wyniki. W ten sposób każda kolejna algebra liczbowa rozszerza poprzednią.
  • podzbiory zbiorów liczbowych nietworzące niezależnych algebr – są to zbiory liczb, wyróżnione ze względu na jakąś szczególną własność, np. liczby pierwsze, będące liczbami naturalnymi dzielącymi się tylko przez 1 i przez siebie. Są one definiowane przez podanie warunku, jaki muszą spełniać liczby z pewnej algebry.
  • liczby nie tworzące zbiorów, lecz klasy. Do tej grupy wchodzą liczby kardynalne, liczby porządkowe i liczby nadrzeczywiste. Okazuje się, że próba stworzenia zbioru tych liczb prowadzi do sprzeczności, można jedynie grupować je w tzw. klasy. Można dla nich również zdefiniować działania arytmetyczne i w pewnym sensie one także stanowią rozszerzenie algebry liczb naturalnych. Liczby kardynalne i porządkowe są definiowane wyłącznie przez konstrukcję.
  • Zbiory liczbowe tworzące algebrę są zawsze definiowane razem z podstawowymi działaniami na nich – dodawaniem i mnożeniem. Dopiero określenie zbioru wraz z działaniami, czyli tzw. struktury algebraicznej, stanowi dostateczną definicję. Nie wystarcza tu skonstruowanie samego zbioru, gdyż określając odpowiednio działania, można sprawić, że np. zbiór liczb wymiernych będzie nieodróżnialny (izomorficzny) od zbioru liczb naturalnych.

    Linia prosta lub prosta – jedno z podstawowych pojęć geometrii, szczególny przypadek nieograniczonej z obydwu stron krzywej o nieskończonym promieniu krzywizny w każdym punkcie.Liczba algebraiczna to liczba rzeczywista (ogólniej zespolona), która jest pierwiastkiem pewnego niezerowego wielomianu o współczynnikach wymiernych (a więc i całkowitych).

    Izomorfizm konstrukcji[ | edytuj kod]

    Dowolny zbiór, w którym zdefiniowane działania spełniają aksjomaty właściwe dla danej algebry liczbowej, czyli tzw. model jej aksjomatyki, można nazwać zbiorem liczb. Posiada on bowiem wówczas wszystkie właściwości, jakich oczekujemy po danym zbiorze liczbowym. Model aksjomatyki liczb nazywamy konstrukcją liczb.

    Liczba pierwsza – liczba naturalna większa od 1, która ma dokładnie dwa dzielniki naturalne: jedynkę i siebie samą, np.Forma kwadratowa albo funkcjonał kwadratowy – w algebrze liniowej szczególna forma (funkcjonał) określona na danej przestrzeni liniowej (tzn. funkcja w ciało jej skalarów), mianowicie jednorodna stopnia 2 funkcja wielomianowa drugiego stopnia.

    Ponieważ dany zestaw aksjomatów może mieć wiele różnych modeli, liczby można skonstruować na wiele sposobów. Metody te są równoważne w tym sensie, że wszelkie twierdzenia udowodnione na liczbach skonstruowanych według jednej metody dają się bez zmian przenosić na inne konstrukcje (zachodzi tzw. izomorfizm). W praktyce więc nie ma, poza domeną teorii mnogości i logiki, potrzeby ich odróżniania.

    Wielomian – wyrażenie algebraiczne złożone ze zmiennych i stałych połączonych działaniami dodawania, odejmowania, mnożenia i podnoszenia do potęgi o stałym wykładniku naturalnym.Półprosta - figura geometryczna składająca się z punktów prostej leżących po jednej stronie punktu prostej, który jest nazywany początkiem półprostej. Bardzo często do tak określonej półprostej dołącza się początek półprostej i mówimy o półprostej domkniętej (z początkiem). W przeciwnym wypadku mówimy o półprostej otwartej (bez początku) .

    Na ogół zaczyna się konstrukcję od liczb naturalnych, następnie buduje w oparciu o nie liczby całkowite, potem w oparciu o nie liczby wymierne, potem rzeczywiste i zespolone. W każdym z tych zbiorów są podzbiory, które przy tej samej definicji działań spełniają aksjomaty liczb zdefiniowanych wcześniej.

    Przykładowo liczby wymierne mogą być skonstruowane jako zbiory par liczb całkowitych z odpowiednio zdefiniowanym dodawaniem i mnożeniem. Wydawałoby się, że liczba całkowita zbiorem par liczb całkowitych być nie może, a więc liczby całkowite nie są szczególnym przypadkiem liczb wymiernych. Ponieważ jednak podzbiór liczb wymiernych odpowiadający ułamkom a/1 ze zwykłym dodawaniem i mnożeniem także spełnia aksjomaty liczb całkowitych, ostatecznie możemy więc stwierdzić, że liczby całkowite są jednak szczególnym przypadkiem wymiernych, a ich zbiór zawiera się w zbiorze liczb wymiernych. Podobnie jest przy konstruowaniu kolejnych zbiorów liczbowych.

    Liczba doskonała – liczba naturalna, która jest sumą wszystkich swych dzielników właściwych (to znaczy od niej mniejszych).Andrzej Grzegorczyk (ur. 22 sierpnia 1922 w Warszawie) – polski matematyk i filozof, specjalizujący się w logice, podstawach matematyki oraz matematycznych podstawach informatyki. W 1950 roku napisał pracę doktorską z matematyki pt. On topological spaces in Topologies without Points pod kierunkiem Andrzeja Mostowskiego. Autor podręcznika akademickiego Zarys logiki matematycznej (PWN, Warszawa 1961). Syn Piotra Grzegorczyka, historyka literatury polskiej.

    Można też wykonać konstrukcję od drugiej strony i najpierw skonstruować jakąś dostatecznie szeroką strukturę, np. liczby zespolone, a następnie zdefiniować pozostałe zbiory jako jej podzbiory z tymi samymi działaniami dodawania i mnożenia.

    Liczby naturalne[ | edytuj kod]

     Osobny artykuł: liczby naturalne.

    Aksjomatyka Peana[ | edytuj kod]

    Na początek załóżmy, że istnieje liczba 1 (cokolwiek by ten symbol miał oznaczać). Chcielibyśmy także dla każdej liczby móc pokazać jej tzw. następnik (oznaczymy go ). Musimy zatem zagwarantować istnienie następnika liczby 1 (który oznaczymy 2), a także następników kolejnych następników. Następnik liczby 2 oznaczymy 3 itd. Jeśli dodatkowo założymy, że 1 nie jest następnikiem żadnej liczby i odpowiednio zdefiniujemy dodawanie i mnożenie, to tak skonstruowany zbiór możemy nazwać zbiorem liczb naturalnych.

    Podzbiór – pewna „część” danego zbioru, czyli dla danego zbioru, nazywanego nadzbiorem, zbiór składający się z pewnej liczby jego elementów, np. żadnego, jednego, wszystkich. Pierwszy przypadek nazywa się podzbiorem pustym, drugi – podzbiorem jednoelementowym lub singletonem, trzeci – podzbiorem niewłaściwym.JSTOR (/dʒeɪ-stɔːr/, skrót od ang. Journal Storage) – biblioteka cyfrowa utworzona w 1995 roku. Początkowo zawierała cyfrowe kopie czasopism naukowych o wyczerpanym nakładzie. Następnie zaczęła zbierać także książki, materiały źródłowe oraz aktualne numery czasopism naukowych. Pozwala na wyszukiwanie w pełnej treści niemal 2000 czasopism naukowych.

    Proces konstrukcji kolejnych elementów zbioru wygląda następująco:

    Ściślej rzecz biorąc, zbiór liczb naturalnych jest definiowany przez aksjomaty Peana.

    Antynomia Russella lub paradoks Russella – sprzeczność wykryta w naiwnej teorii mnogości przez Bertranda Russella w 1901 roku. Sprzeczność ta stanowiła duży cios dla rozwoju logicyzmu, będącego próbą aksjomatyzacji matematyki, zgodnie z którym wszystkie obiekty matematyczne powinny dać się wyrazić jako zbiory. Obserwacje dokonane przez Russella zmusiły matematyków do rewizji tego fundamentalnego stanowiska i następnie przyjęcia, że istnieją obiekty niebędące zbiorami, opisywane formułami logicznymi – nazywa się je klasami właściwymi. Paradoks ten wynika z autoreferencji, czyli odwoływania się do samego siebie, i ma charakter podobny do takich paradoksów jak paradoks zbioru wszystkich zbiorów, paradoks kłamcy czy paradoks Berry’ego; por. twierdzenia Gödla i problem stopu.John von Neumann (ur. 28 grudnia 1903 w Budapeszcie, zm. 8 lutego 1957 w Waszyngtonie) – węgierski matematyk, inżynier chemik, fizyk i informatyk, pracujący głównie w Stanach Zjednoczonych. Wniósł znaczący wkład do wielu dziedzin matematyki – w szczególności był głównym twórcą teorii gier, teorii automatów komórkowych (w które pewien początkowy wkład miał także Stanisław Ulam) i stworzył formalizm matematyczny mechaniki kwantowej. Uczestniczył w projekcie Manhattan. Przyczynił się do rozwoju numerycznych prognoz pogody.

    Niektórzy matematycy zaliczają zero do liczb naturalnych, inni nie. Jest to wyłącznie kwestia nazewnictwa. Zarówno zbiór liczb naturalnych z zerem, jak i bez niego ma powyższe własności. W tym pierwszym przypadku J oznacza 0, w tym drugim 1.

    Do pełnego określenia liczb naturalnych brakuje definicji działań i porządku. Definicje te zależą już od tego, czy liczby naturalne zaczniemy od zera, czy nie.

    Dla liczb z zerem dodawanie, mnożenie i relację porządku wprowadzamy przez aksjomaty:

    Algebra ogólna – obiekt matematyczny będący przedmiotem badań algebry uniwersalnej. Czasami algebra uniwersalna nazywana jest algebrą ogólną, wówczas rozważane w niej obiekty nazywa się zwykle algebrami abstrakcyjnymi lub po prostu algebrami.Relacja przeciwsymetryczna – relacja, która jeżeli zachodzi dla pary ( x , y ) {displaystyle (x,y)} , to nie zachodzi dla pary ( y , x ) {displaystyle (y,x)} .

    Podstawiając do równania 9 wartość: uzyskujemy skąd wynika, że jest elementem neutralnym mnożenia.

    MathWorld – encyklopedia matematyczna online, sponsorowana przez Wolfram Research, twórcę i producenta programu Mathematica; współsponsorem jest National Science Foundation (National Science Digital Library).Przestrzeń liniowa lub wektorowa – w matematyce zbiór obiektów (nazywanych "wektorami"), które mogą być, nieformalnie rzecz ujmując, skalowane i dodawane. Formalnie jest to zbiór z określonymi dwoma działaniami: dodawaniem elementów tej przestrzeni (wektorów) i mnożeniem przez elementy ustalonego ciała, które związane są ze sobą poniższymi aksjomatami. Przestrzenie liniowe to podstawowy obiekt badań algebry liniowej i analizy funkcjonalnej. Znajdują zastosowanie niemal we wszystkich gałęziach matematyki, naukach ścisłych i inżynierii.

    Zwykle przywykliśmy do zapisywania tej liczby jako 1, stąd można napisać:

    Podstawiając do równania 7: uzyskujemy: czyli:

    Kres (kraniec) dolny (również łac. infimum) oraz kres (kraniec) górny (także łac. supremum) – w matematyce pojęcia oznaczające odpowiednio: największe z ograniczeń dolnych oraz najmniejsze z ograniczeń górnych danego zbioru, o ile takie istnieją.Ciało uporządkowane – ciało K, w którym wyróżniony jest zbiór D elementów dodatnich o następujących własnościach:

    Odstępy pomiędzy każdą liczbą a jej następnikiem są identyczne i równe 1.

    Stąd:

    Dla liczb naturalnych bez zera dodawanie, mnożenie i relację porządku wprowadzamy przez aksjomaty:

    Sedeniony (symbol S {displaystyle mathbb {S} } ) – rodzina liczb hiperzespolonych.Liczby całkowite – liczby naturalne dodatnie N + = { 1 , 2 , 3 , … } {displaystyle mathbb {N} _{+}={1,2,3,dots }} oraz liczby przeciwne do nich { − 1 , − 2 , − 3 , … } {displaystyle {-1,-2,-3,dots }} , a także liczba zero. Uogólnieniem liczb całkowitych są liczby wymierne i tym samym liczby rzeczywiste, szczególnym przypadkiem liczb całkowitych są: liczby naturalne.

    Inne aksjomatyki[ | edytuj kod]

    Aksjomat indukcji jest najbardziej problematycznym z aksjomatów Peana. Sprawia on, że aksjomatyka liczb naturalnych nie jest wyrażona w języku pierwszego rzędu, ale za to (jak wykazał Richard Dedekind) jest ona kategoryczna, czyli każde dwa modele spełniające te aksjomaty są izomorficzne.

    Ciąg – w matematyce pojęcie oddające intuicję ponumerowania, czy też uporządkowania elementów zbioru. W zależności od rodzaju elementów zbioru stosuje się różne nazwy: w przypadku liczb mówi się o ciągach liczbowych, bądź bardziej precyzyjnie, np. w przypadku zbioru liczb całkowitych, rzeczywistych czy zespolonych, ciąg nazywa się wtedy odpowiednio ciągiem całkowitoliczbowym, rzeczywistym i zespolonym. Jeśli elementami zbioru są funkcje, to ciąg nazywa się ciągiem funkcyjnym. Ciąg powstały poprzez wybranie elementów innego ciągu nazywa się podciągiem.Równość – relacja, która jest relacją równoważności. Jest to zatem relacja zwrotna, przechodnia i symetryczna. Ważną cechą relacji równości a = b {displaystyle a=b} jest to, że dla dowolnej funkcji f {displaystyle f} zachodzi:

    Ponieważ w logice głównym narzędziem są języki pierwszego rzędu, matematycy rozważają arytmetykę Peana (oznaczaną przez PA od angielskiego Peano arithmetic). Jest to teoria w języku pierwszego rzędu, która powstaje przez zastąpienie aksjomatu indukcji schematem (nieskończoną listą) aksjomatów pierwszego rzędu. Teoria PA jest znacznie słabsza niż aksjomatyzacja Peana, w szczególności nie jest kategoryczna i ma wiele nieizomorficznych modeli.

    Czasoprzestrzeń Minkowskiego – przestrzeń liniowa w fizyce i matematyce, która łącząc czas z przestrzenią trówymiarową umożliwia formalny zapis równań szczególnej teorii względności Einsteina. Nazwę zawdzięcza niemieckiemu matematykowi Hermannowi Minkowskiemu, który opisał ją w 1907.Relacja równoważności – zwrotna, symetryczna i przechodnia relacja dwuargumentowa określona na pewnym zbiorze utożsamiająca ze sobą w pewien sposób jego elementy, co ustanawia podział tego zbioru na rozłączne podzbiory według tej relacji. Podobnie każdy podział zbioru niesie ze sobą informację o pewnej relacji równoważności.

    Z twierdzenia Gödla o niezupełności wynika, że dowolna „porządnie opisywalna” aksjomatyka liczb naturalnych w języku pierwszego rzędu jest niezupełna. Zatem dla każdego jej modelu (konstrukcji) istnieją takie zdania, które choć prawdziwe w obrębie danej konstrukcji, nie dają się wyprowadzić z aksjomatów. Arytmetyki Peana PA nie da się uzupełnić skończoną liczbą aksjomatów, tak aby prawdziwość każdego jej twierdzenia dawała się rozstrzygnąć. Matematycy znają takie twierdzenia teorii liczb (np. twierdzenie Goodsteina), których nie można udowodnić ani obalić na gruncie PA (choć wynikają one z aksjomatów Peana).

    Wydawnictwa Naukowo-Techniczne (WNT) – polskie wydawnictwo założone w 1949 z siedzibą w Warszawie, do 1961 działało pod firmą Państwowe Wydawnictwa Techniczne.Struktura matematyczna (także model, system semantyczny, model semantyczny, dziedzina, struktura pierwszego rzędu) - w matematyce zbiór obiektów matematycznych połączonych w pewien system.

    Inną aksjomatyką jest podejście Kaye (1991). Kaye nie definiuje aksjomatu indukcji, uznając go za część metajęzyka. Kaye zakłada w nim, że zero należy do liczb naturalnych i definiuje od razu dodawanie, mnożenie i relację porządku:

    Istnieją też systemy aksjomatycznej teorii mnogości równoważne arytmetyce Peana.

    Konstrukcja Fregego i Russella[ | edytuj kod]

    Pierwsza konstrukcja liczb naturalnych, autorstwa Gottloba Fregego i niezależnie Bertranda Russella, definiuje je po prostu jako liczności (ściślej: moce) zbiorów skończonych. Relacja „dwa zbiory są równoliczne” pozwala na uporządkowanie zbiorów skończonych w klasy zbiorów o tej samej liczności. Etykiety przypisane tym klasom nazywamy liczbami naturalnymi.

    Teoria mnogości lub inaczej: teoria zbiorów – dział matematyki, a zarazem logiki matematycznej zapoczątkowany przez niemieckiego matematyka Georga Cantora pod koniec XIX wieku. Teoria początkowo wzbudzała wiele kontrowersji, jednak wraz z postępem matematyki zaczęła ona pełnić rolę fundamentu, na którym opiera się większość matematycznych rozważań.Kokwaterniony (ang. coquaternions, split-quaternions - kwaterniony rozdzielne) to w matematyce grupa liczb hiperrzeczywistych o postaci

    Konstrukcja von Neumanna[ | edytuj kod]

    W teorii mnogości liczby naturalne konstruuje się w sposób zaproponowany przez Johna von Neumanna. W tym przypadku zbiór pusty utożsamiamy z zerem, następnik zera – liczbę jeden – utożsamiamy ze zbiorem złożonym z zera (zbioru pustego) i ogólniej następnik każdej liczby jest zbiorem, którego elementami są wszystkie poprzednie liczby.

    Działanie lub operacja – w matematyce i logice przyporządkowanie jednemu lub większej liczbie elementów nazywanych argumentami lub operandami elementu nazywanego wynikiem. Badaniem działań w ogólności zajmuje się dział nazywany algebrą uniwersalną, zbiory z choć jednym określonym na nim działaniem algebraicznym nazywa się algebrami ogólnymi (często krótko: algebrami), samą rodzinę działań określa się nazwą „sygnatura”.Aksjomat wyboru (ozn. AC od ang. Axiom of Choice) – jeden z aksjomatów teorii mnogości mówiący o możliwości skonstruowania zbioru (nazywanego selektorem) zawierającego dokładnie po jednym elemencie z każdego zbioru należącego do rodziny niepustych zbiorów rozłącznych.

    Jeśli przez oznaczać zbiór liczb naturalnych, wówczas:

    Alfred Tarski wł. Alfred Tajtelbaum (ur. 14 stycznia 1901 w Warszawie, zm. 26 października 1983 w Berkeley, Kalifornia, USA) – polski logik pracujący od 1939 r. w Stanach Zjednoczonych. Twórca m.in. teorii modeli i semantycznej definicji prawdy, uważany jest współcześnie za jednego z najwybitniejszych logików wszech czasów.Liczby nadrzeczywiste (ang. surreal numbers) – klasa obiektów, spełniająca aksjomaty ciała, która zawiera w sobie zarówno liczby rzeczywiste, hiperrzeczywiste, jak i porządkowe. Tak jak liczby hiperrzeczywiste klasa ta zawiera również wielkości nieskończone oraz nieskończenie małe (infinitezymalne). Klasa liczb nadrzeczywistych oryginalnie została oznaczona No, jednak ze względu na podobieństwo do oznaczenia liczb naturalnych z zerem N 0 {displaystyle mathbb {N} _{0}} poniżej użyty został symbol F {displaystyle F} .

    W teorii mnogości zbiór liczb naturalnych oznacza się też przez (por. liczba porządkowa).

    Twierdzenie Gödla to jeden z najbardziej znanych rezultatów logiki matematycznej. W istocie znane są dwa różne twierdzenia Gödla: pierwsze z nich to twierdzenie o niezupełności, drugie zaś to jego wniosek nazywany też twierdzeniem o niedowodliwości niesprzeczności. Oba twierdzenia zostały udowodnione w 1931 roku przez austriackiego matematyka i logika Kurta Gödla. Uważa się również, że twierdzenia te dają negatywną odpowiedź na drugi problem Hilberta, i w ten sposób mają spore znaczenie w filozofii matematyki. Oprócz rozpatrywanych w tym artykule twierdzeń, Gödel udowodnił też twierdzenie o istnieniu modelu i twierdzenie o nierozstrzygalności (patrz: teoria, struktura matematyczna).Aksjomat (postulat, pewnik) (gr. αξιωμα [aksíoma] – godność, pewność, oczywistość) – jedno z podstawowych pojęć logiki matematycznej. Od czasów Euklidesa uznawano, że aksjomaty to zdania przyjmowane za prawdziwe, których nie dowodzi się w obrębie danej teorii matematycznej. We współczesnej matematyce definicja aksjomatu jest nieco inna:

    Niektóre podzbiory liczb naturalnych[ | edytuj kod]

  • liczby pierwsze – liczby naturalne większe od 1, których dzielnikami naturalnymi są tylko 1 oraz
  • liczby Fermata – liczby naturalne postaci gdzie jest liczbą naturalną
  • liczby Mersenne’a – liczby określone wzorem gdzie p jest liczbą pierwszą
  • liczby półpierwsze – posiadające dokładnie dwa dzielniki pierwsze
  • liczby Fibonacciego – wyrazy ciągu Fibonacciego
  • liczby doskonałe – liczby naturalne, które są sumą wszystkich swych dzielników właściwych.
  • Liczby naturalne – liczby służące podawaniu liczności (trzy osoby, zob. liczebnik główny/kardynalny) i ustalania kolejności (trzecia osoba, zob. liczebnik porządkowy), poddane w matematyce dalszym uogólnieniom (odpowiednio: liczby kardynalne, liczby porządkowe). Badaniem własności liczb naturalnych zajmują się arytmetyka i teoria liczb. Według finitystów, zwolenników skrajnego nurtu filozofii matematyki, są to jedyne liczby, jakimi powinna zajmować się matematyka - słynne jest stwierdzenie propagatora arytmetyzacji wszystkich dziedzin matematyki Leopolda Kroneckera: Liczby całkowite stworzył dobry Bóg. Reszta jest dziełem człowieka.Liczba półpierwsza – liczba rozkładająca się na iloczyn dokładnie dwóch liczb pierwszych (na dokładnie dwa czynniki pierwsze).


    Podstrony: 1 [2] [3] [4] [5] [6] [7] [8]




    Warto wiedzieć że... beta

    Sprzężenie zespolone – jednoargumentowe działanie algebraiczne określone na liczbach zespolonych polegające na zmianie znaku części urojonej danej liczby zespolonej.
    Relacja symetryczna – relacja, która jeśli zachodzi dla pary ( x , y ) {displaystyle (x,y)} , to zachodzi też dla pary ( y , x ) {displaystyle (y,x)} .
    Logika matematyczna – dział matematyki, który wyodrębnił się jako samodzielna dziedzina na przełomie XIX i XX wieku, wraz z dążeniem do dogłębnego zbadania podstaw matematyki. Koncentruje się ona na analizowaniu zasad rozumowania oraz pojęć z nim związanych z wykorzystaniem sformalizowanych oraz uściślonych metod i narzędzi matematyki.
    W matematyce p-adyczny system liczbowy dla dowolnej liczby pierwszej p stanowi rozszerzenie arytmetyki liczb wymiernych w sposób istotnie różny od rozszerzenia do liczb rzeczywistych bądź zespolonych. Rozszerzenie to uzyskuje się przez alternatywną interpretację pojęcia "bliskości" czy też wartości bezwzględnej. W szczególności, dwie liczby p-adyczne są bliskie, gdy ich różnica jest podzielna przez wysoką potęgę p. Ta własność sprawia, że liczby p-adyczne dobrze służą do opisu kongruencji. Okazuje się, że dzięki temu znajdują zastosowanie w teorii liczb, w tym w słynnym dowodzie Wielkiego Twierdzenia Fermata odkrytym przez Andrew Wilesa.
    Pierścień – struktura formalizująca własności algebraiczne liczb całkowitych oraz arytmetyki modularnej; intuicyjnie zbiór, którego elementy mogą być bez przeszkód dodawane, odejmowane i mnożone, lecz niekoniecznie dzielone. Badanie pierścieni umożliwiło uogólnienie innych pojęć matematycznych takich, jak np. liczby pierwsze (przez ideały pierwsze), wielomiany, ułamki oraz rozwinięcie teorii podzielności i wskazania przy tym najogólniejszej struktury, w której możliwe jest stosowanie algorytmu Euklidesa (tzw. pierścień Euklidesa). Dział matematyki opisujący te struktury nazywa się teorią pierścieni.
    Paradoks Buralego-Fortiego – twierdzenie odkryte w 1897 roku przez Cesarego Buralego-Fortiego, ucznia Giuseppe Peana, mówiące o tym, iż liczby porządkowe nie tworzą zbioru.
    Równanie diofantyczne (od matematyka Diofantosa) to równanie, którego rozwiązania szuka się w zbiorze liczb całkowitych lub liczb naturalnych. Zwykle rozważa się równania diofantyczne o dwóch lub więcej niewiadomych – równania z jedną niewiadomą dają się rozwiązać metodami algebraicznymi.

    Reklama