Kierunek w geometrii elementarnej

Z Wikipedii, wolnej encyklopedii
Przejdź do nawigacji Przejdź do wyszukiwania

Kierunekklasa abstrakcji relacji równoległości prostych, półprostych, odcinków i wektorów.

Geometria rzutowa to dział matematyki zajmujący się badaniem własności figur geometrycznych, które nie zmieniają się przy przekształceniach rzutowych. Do najważniejszych pojęć geometrii rzutowej należą: prosta, płaszczyzna oraz dwustosunek czwórki punktów. Twórcą geometrii rzutowej był francuski matematyk Jean-Victor Poncelet, który jej podstawy podał w 1822.Wektor (z łac. [now.], „niosący; ten, który niesie; nośnik”, od vehere, „nieść”; via, „droga”) – istotny w matematyce elementarnej, inżynierii i fizyce obiekt mający moduł (zwany też – zdaniem niektórych niepoprawnie - długością lub wartością), kierunek wraz ze zwrotem (określającym orientację wzdłuż danego kierunku).

Innymi słowy jest to zbiór wszystkich prostych lub wektorów równoległych do pewnej zadanej prostej. Określenie, że pewien wektor albo prosta mają dany kierunek, oznacza że należą one do tego zbioru.

Argument liczby zespolonej – miara kąta skierowanego między wektorem reprezentującym liczbę zespoloną z {displaystyle z} na płaszczyźnie zespolonej, a osią rzeczywistą. Oznaczenie: arg ⁡ ( z ) {displaystyle arg(z)} .Zbiór – pojęcie pierwotne teorii zbiorów (znanej szerzej jako teoria mnogości; za jej twórcę uważa się Georga Cantora) leżące u podstaw całej matematyki; intuicyjnie jest to nieuporządkowany zestaw różnych obiektów, czy też kolekcja niepowtarzających się komponentów bez wyróżnionej kolejności.

Zobacz też[ | edytuj kod]

  • wektor
  • zwrot wektora
  • argument liczby zespolonej
  • geometria rzutowa
  • Odcinek – w geometrii część prostej zawarta pomiędzy dwoma jej punktami z tymi punktami włącznie. Odcinek w całości zawiera się wewnątrz tej prostej.Zwrot wektora – jedna z podstawowych własności charakteryzujących wektor, obok jego kierunku, długości i (dla wektora zaczepionego) punktu zaczepienia.




    Warto wiedzieć że... beta

    Relacja – w teorii mnogości dowolny podzbiór iloczynu kartezjańskiego skończonej liczby zbiorów; definicja ta oddaje intuicję pewnego związku, czy zależności między elementami wspomnianych zbiorów (elementy wspomnianych zbiorów pozostają w związku albo łączy je pewna zależność, czy też własność lub nie). Najważniejszymi relacjami są relacje dwuargumentowe, tj. między elementami pary zbiorów (opisane w osobnym artykule, w tym funkcje i działania jednoargumentowe); relacje jednoargumentowe to po prostu podzbiory pewnego zbioru.

    Reklama