Grupa bijekcji

Z Wikipedii, wolnej encyklopedii
Przejdź do nawigacji Przejdź do wyszukiwania

Grupa bijekcjigrupa wszystkich bijekcji ustalonego zbioru z działaniem składania pełniącym rolę działania grupowego (i tożsamością jako elementem neutralnym; element odwrotny dany jest jako funkcja odwrotna).

Liczby naturalne – liczby służące podawaniu liczności (trzy osoby, zob. liczebnik główny/kardynalny) i ustalania kolejności (trzecia osoba, zob. liczebnik porządkowy), poddane w matematyce dalszym uogólnieniom (odpowiednio: liczby kardynalne, liczby porządkowe). Badaniem własności liczb naturalnych zajmują się arytmetyka i teoria liczb. Według finitystów, zwolenników skrajnego nurtu filozofii matematyki, są to jedyne liczby, jakimi powinna zajmować się matematyka - słynne jest stwierdzenie propagatora arytmetyzacji wszystkich dziedzin matematyki Leopolda Kroneckera: Liczby całkowite stworzył dobry Bóg. Reszta jest dziełem człowieka.Twierdzenie Cayleya – twierdzenie teorii grup autorstwa Arthura Cayleya mówiące, iż dowolna abstrakcyjna grupa jest w rzeczywistości pewną grupą przekształceń (podgrupą grupy symetrycznej) zbioru, na którym została ona określona. Pozwala ono przełożyć wszystkie wyniki dotyczące grup symetrycznych na grupy abstrakcyjne.

Grupy te nazywa się również grupami symetrycznymi, choć często rozumie się przez to grupy permutacji (czyli bijekcji zbiorów skończonych). Grupy bijekcji zbioru oznaczane są często choć stosuje się też inne oznaczenia, np. , czy

Zbiór skończony − zbiór o skończonej liczbie elementów. Nieujemną liczbę naturalną określającą ilość elementów zbioru skończonego nazywa się mocą zbioru. Zbiór skończony ma moc skończoną. Najmniejszym zbiorem skończonym jest zbiór pusty  Ø.Funkcja odwrotna – funkcja przyporządkowująca wartościom jakiejś funkcji jej odpowiednie argumenty, czyli działająca odwrotnie do niej.

Liczba elementów (tj. rząd) grupy bijekcji zbioru wynosi w przypadku skończonym zapis ten należy rozumieć jako silnię, w nieskończonym jako (na podstawie twierdzenia Cantora–Bernsteina–Schrödera).

Funkcja tożsamościowa a. identycznościowa – w matematyce funkcja danego zbioru w siebie, która każdemu argumentowi przypisuje jego samego; intuicyjnie funkcja, która „nic nie zmienia”.Funkcja wzajemnie jednoznaczna (bijekcja) – funkcja będąca jednocześnie funkcją różnowartościową i "na". Innymi słowy, bijekcja to funkcja (relacja) taka, że każdemu elementowi obrazu odpowiada dokładnie jeden element dziedziny.

Ogólnie każdą grupę można rozumieć jako grupę bijekcji elementów zbioru, na którym została określona (tzw. twierdzenie Cayleya): w związku z tym wszystkie wyniki dotyczące grup bijekcji dotyczą również dowolnych grup abstrakcyjnych.

Przykłady[ | edytuj kod]

Jeśli jest zbiorem pustym, to grupa bijekcji składa się z jednego elementu, (bijekcji pustej). Gdy jest zbiorem liczb naturalnych, to grupa bijekcji jest mocy continuum, gdyż

Zbiór pusty - zbiór, który nie zawiera żadnych elementów. W teorii mnogości ZF, będącej najpopularniejszą aksjomatyką współczesnej matematyki, istnienie zbioru pustego postuluje aksjomat zbioru pustego, natomiast aksjomat ekstensjonalności gwarantuje jego jedyność. Zbiór pusty oznaczany jest zwykle symbolami ∅ {displaystyle varnothing } , ∅ {displaystyle emptyset } , ∅ bądź {}.Twierdzenie Cantora-Bernsteina-Schrödera – twierdzenie teorii mnogości głoszące, że jeśli zbiór A jest równoliczny z pewnym podzbiorem zbioru B oraz zbiór B jest równoliczny z pewnym podzbiorem zbioru A, to zbiory A i B są równoliczne.

Zobacz też[ | edytuj kod]

  • bijekcja
  • Przypisy[ | edytuj kod]

    1. Gleichgewicht, Bolesław: Algebra. Podręcznik dla kierunków nauczycielskich studiów matematycznych, Państwowe Wydawnictwo Naukowe, Warszawa 1983. Wydanie III. Strony 35-37. ​ISBN 83-01-03903-5​.
    2. Komorowski, Jacek: Od liczb zespolonych do tensorów, spinorów, algebr Liego i kwadryk, Państwowe Wydawnictwo Naukowe, Warszawa 1978. Strony 2-3.
    Bolesław Gleichgewicht (ur. 30 kwietnia 1919 w Warszawie) – doktor nauk matematycznych, zainteresowany różnymi aspektami algebry oraz dydaktyki matematyki.Element neutralny – w algebrze element struktury algebraicznej, który dla danego działania dwuargumentowego przyłożony do dowolnego elementu nie zmieni go.




    Reklama