Funkcje specjalne

Z Wikipedii, wolnej encyklopedii
Przejdź do nawigacji Przejdź do wyszukiwania

Funkcje specjalne – umowna nazwa grupy funkcji, które nie są funkcjami elementarnymi, a jednocześnie odgrywają ważną rolę w wielu dziedzinach nauki. Niektóre z nich zostały szczegółowo przebadane i stablicowane, a wiele programów komputerowych może obliczać ich wartości z dowolną dokładnością. Podstawowe funkcje specjalne są rozwiązaniami równań różniczkowych liniowych rzędu drugiego, o zmiennych współczynnikach. Niektóre funkcje specjalne stanowią rozwiązania równań różniczkowych nieliniowych drugiego i wyższych rzędów.

Funkcja gamma (zwana też gammą Eulera) – funkcja specjalna, która rozszerza pojęcie silni na zbiór liczb rzeczywistych i zespolonych. Gdy część rzeczywista liczby zespolonej z jest dodatnia, to całka (całka Eulera):Funkcja τ – funkcja w teorii liczb równa funkcji σ stopnia zerowego. Wartość tej funkcji oznacza liczbę podzielników argumentu

Inne funkcje specjalne:

Funkcja „na” a. surjekcja pisane też czasami jako suriekcja – funkcja przyjmująca jako swoje wartości wszystkie elementy przeciwdziedziny, tj. której obraz jest równy przeciwdziedzinie.Library of Congress Control Number (LCCN) – numer nadawany elementom skatalogowanym przez Bibliotekę Kongresu wykorzystywany przez amerykańskie biblioteki do wyszukiwania rekordów bibliograficznych w bazach danych i zamawiania kart katalogowych w Bibliotece Kongresu lub u innych komercyjnych dostawców.
  • funkcje Mathieu - funkcje eliptycznego cylindra
  • funkcje Webera-Hermite'a - funkcje parabolicznego cylindra
  • funkcje Heinego
  • funkcje Wangereina
  • funkcje Blasiusa
  • funkcje Falknera-Skanna
  • Teoria liczb - dziedzina matematyki, zajmująca się badaniem własności liczb – początkowo tylko naturalnych, i do dziś dla wielu specjalistów są one szczególnie atrakcyjne.Funkcje Mathieu to funkcje specjalne, odpowiadające stanom własnym równania Schrödingera pojedynczej cząstki umieszczonej w periodycznym potencjale. Przykładem mogą być funkcje Blocha elektronów w jednowymiarowym ciele stałym z periodycznym potencjałem.




    Warto wiedzieć że... beta

    Badanie przebiegu zmienności funkcji – zadanie matematyczne polegające na wyznaczeniu pewnych własności danej wzorem funkcji rzeczywistej jednej zmiennej rzeczywistej, które można wywnioskować z niej samej oraz z jej pierwszej i drugiej pochodnej. Własności te pozwalają skonstruować jej przybliżony wykres. Schemat rozwiązywania można przestawić następująco:
    Funkcje Blasiusa - funkcje specjalne występujące w teorii warstwy granicznej. Funkcje te pojawiły się po raz pierwszy w podanym przez Blasiusa klasycznym rozwiązaniu samopodobnym równań Prandtla opisujących przepływ płynu w laminarnej warstwie granicznej (tzw. laminarna warstwa graniczna Balsiusa).
    Funkcja ciągła – funkcja o następującej intuicyjnej własności: „mała” zmiana argumentu niesie ze sobą „małą” zmianę wartości; lub też: wartości funkcji dla „bliskich” sobie argumentów również będą sobie „bliskie”.
    Biblioteka Narodowa Francji (fr. Bibliothèque nationale de France, BnF) – francuska biblioteka narodowa, znajdująca się w Paryżu. Przewidziana jest jako repozytorium dla wszystkich materiałów bibliotecznych, wydawanych we Francji. Obecnym dyrektorem Biblioteki jest Bruno Racine.
    Funkcja (łac. functio, -onis, „odbywanie, wykonywanie, czynność”) – dla danych dwóch zbiorów X i Y przyporządkowanie każdemu elementowi zbioru X dokładnie jednego elementu zbioru Y. Oznacza się ją na ogół f, g, h itd.
    Warunek Höldera – warunek dotyczący funkcji pojawiający się w założeniach wielu twierdzeń z zakresu analizy matematycznej, jedno z kryteriów jednostajnej ciągłości funkcji.
    Funkcja wzajemnie jednoznaczna (bijekcja) – funkcja będąca jednocześnie funkcją różnowartościową i "na". Innymi słowy, bijekcja to funkcja (relacja) taka, że każdemu elementowi obrazu odpowiada dokładnie jeden element dziedziny.

    Reklama