• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Funkcje parzyste i nieparzyste



    Podstrony: [1] 2 [3]
    Przeczytaj także...
    Wartość bezwzględna a. moduł – dla danej liczby rzeczywistej wartość liczbowa nieuwzględniająca znaku liczby. Przykładowo Parser nie mógł rozpoznać (Nie można zapisać obrazu z wzorem w systemie plików.): 5Wielomian – wyrażenie algebraiczne złożone ze zmiennych i stałych połączonych działaniami dodawania, odejmowania, mnożenia i podnoszenia do potęgi o stałym wykładniku naturalnym.
    Własności[ | edytuj kod]
  • Funkcje parzyste (poza szczególnymi przypadkami funkcji pustej oraz funkcji określonej jedynie w zerze) nigdy nie są różnowartościowe.
  • Oba zbiory funkcji parzystych i funkcji nieparzystych ze standardowymi działaniami dodawania i mnożenia przez liczbę stanowią przestrzenie liniowe.
  • Każdą funkcję dla której takie stwierdzenie ma sens, można przedstawić jako sumę funkcji parzystej i nieparzystej gdzie dla każdego z dziedziny oraz
  • Przykładami powyższego rozkładu są oraz
  • Niech będą funkcjami parzystymi, a funkcjami nieparzystymi. Wtedy:
  • oraz (tam, gdzie określone) są funkcjami parzystymi,
  • oraz (tam, gdzie jest określona) są funkcjami nieparzystymi,
  • jest funkcją parzystą ( jest tu złożeniem funkcji),
  • jest funkcją nieparzystą.
  • Wykresy[ | edytuj kod]

    Wykres funkcji parzystej jest symetryczny względem osi a nieparzystej jest symetryczny względem początku układu współrzędnych. Jeśli należy do dziedziny nieparzystej funkcji to (wykres funkcji przechodzi przez początek układu współrzędnych).

    Grupa – jedna ze struktur algebraicznych: zbiór niepusty, na którym określono pewne łączne działanie dwuargumentowe wewnętrzne, dla którego istnieje element odwrotny do każdego elementu oraz element neutralny. Można powiedzieć, że grupą jest monoid, w którym każdy element ma element odwrotny. Dział matematyki badający własności grup nazywa się teorią grup.Podzbiór – pewna „część” danego zbioru, czyli dla danego zbioru, nazywanego nadzbiorem, zbiór składający się z pewnej liczby jego elementów, np. żadnego, jednego, wszystkich. Pierwszy przypadek nazywa się podzbiorem pustym, drugi – podzbiorem jednoelementowym lub singletonem, trzeci – podzbiorem niewłaściwym.


    Podstrony: [1] 2 [3]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Funkcje hiperboliczne – funkcje zmiennej rzeczywistej lub zespolonej będących sumą, różnicą lub ilorazem funkcji eksponencjalnych określone następująco:
    Przestrzeń liniowa lub wektorowa – w matematyce zbiór obiektów (nazywanych "wektorami"), które mogą być, nieformalnie rzecz ujmując, skalowane i dodawane. Formalnie jest to zbiór z określonymi dwoma działaniami: dodawaniem elementów tej przestrzeni (wektorów) i mnożeniem przez elementy ustalonego ciała, które związane są ze sobą poniższymi aksjomatami. Przestrzenie liniowe to podstawowy obiekt badań algebry liniowej i analizy funkcjonalnej. Znajdują zastosowanie niemal we wszystkich gałęziach matematyki, naukach ścisłych i inżynierii.
    Wykres funkcji – potocznie graficzne przedstawienie funkcji. Ogólniej, w matematyce wykresem funkcji f : X → Y {displaystyle f:X o Y} , gdzie X {displaystyle X} i Y {displaystyle Y} są dowolnymi zbiorami, nazywamy podzbiór S ⊂ X × Y {displaystyle Ssubset X imes Y} dany wzorem:
    Symetria (gr. συμμετρια, od συμ, podobny oraz μετρια, miara) – właściwość figury, bryły lub ogólnie dowolnego obiektu matematycznego (można mówić np. o symetrii równań), polegająca na tym, iż istnieje należące do pewnej zadanej klasy przekształcenie nie będące identycznością, które odwzorowuje dany obiekt na niego samego. Brak takiej właściwości nazywany jest asymetrią. W zależności od klasy dopuszczalnych przekształceń wyróżnia się rozmaite rodzaje symetrii. Tym samym pojęciem określa się nie tylko obiekty, ale też same przekształcenia.
    Funkcja Weierstrassa - pierwszy opublikowany przykład rzeczywistej funkcji ciągłej, nieróżniczkowalnej w żadnym punkcie. Nazwa pochodzi od nazwiska odkrywcy, Karla Weierstraßa.
    Pierścień – struktura formalizująca własności algebraiczne liczb całkowitych oraz arytmetyki modularnej; intuicyjnie zbiór, którego elementy mogą być bez przeszkód dodawane, odejmowane i mnożone, lecz niekoniecznie dzielone. Badanie pierścieni umożliwiło uogólnienie innych pojęć matematycznych takich, jak np. liczby pierwsze (przez ideały pierwsze), wielomiany, ułamki oraz rozwinięcie teorii podzielności i wskazania przy tym najogólniejszej struktury, w której możliwe jest stosowanie algorytmu Euklidesa (tzw. pierścień Euklidesa). Dział matematyki opisujący te struktury nazywa się teorią pierścieni.
    Funkcja Dirichleta – funkcja charakterystyczna zbioru liczb wymiernych Q {displaystyle mathbb {Q} } , tzn. funkcja zmiennej rzeczywistej, która przyjmuje wartość 1 , {displaystyle 1,} gdy argument jest liczbą wymierną i wartość 0 , {displaystyle 0,} gdy argument jest liczbą niewymierną.

    Reklama

    Czas generowania strony: 0.942 sek.