• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Funkcje parzyste i nieparzyste



    Podstrony: 1 [2] [3]
    Przeczytaj także...
    Wartość bezwzględna a. moduł – dla danej liczby rzeczywistej wartość liczbowa nieuwzględniająca znaku liczby. Przykładowo Parser nie mógł rozpoznać (Nie można zapisać obrazu z wzorem w systemie plików.): 5Wielomian – wyrażenie algebraiczne złożone ze zmiennych i stałych połączonych działaniami dodawania, odejmowania, mnożenia i podnoszenia do potęgi o stałym wykładniku naturalnym.
    tbody>tr>th.navbox-title>.tytuł{font-size:110%;padding-left:0;padding-right:0}.mw-parser-output .navbox-collapse{float:right;width:6em;height:1.6em}.mw-parser-output .navbox-tnavbar{float:left;width:6em;height:1.6em;text-align:left}.mw-parser-output table.navbox.v2 .navbox-group{text-align:right;padding-left:1em;padding-right:1em}.mw-parser-output table.navbox.v2 .navbox-list{width:100%;padding:0px}.mw-parser-output table.navbox.v2 .navbox-grafika-lewa{padding:0 2px 0 0}.mw-parser-output table.navbox.v2 .navbox-grafika{padding:0 0 0 2px}.mw-parser-output table.navbox.v2 .navbox-list.hlist{padding:0em 0.25em}.mw-parser-output table.navbox.v2 th.navbox-group+td.navbox-list{text-align:left}.mw-parser-output table.navbox.v2 th.navbox-group td.navbox-list{text-align:left}.mw-parser-output table.navbox-columns-table.v2 .navbox-column{width:100%;padding:0px}.mw-parser-output table.navbox-columns-table.v2{table-layout:fixed}.mw-parser-output table.navbox-columns-table.v2>tbody>tr>td{vertical-align:top}.mw-parser-output table.navbox-columns-table.v2>tbody>.nagłówek>.navbox-abovebelow{vertical-align:bottom}.mw-parser-output .navbox-column>ul{column-width:24em;text-align:left;list-style:none}.mw-parser-output .navbox-column>ul>li{white-space:nowrap;padding:0;margin:0}.mw-parser-output .navbox-tnavbar{color:#002bb8}.mw-parser-output .navbox-tnavbar a{color:#002bb8}.mw-parser-output table.navbox.v2 .navbox-group{background:#ddddff}.mw-parser-output table.navbox.v2 tr+tr>td,.mw-parser-output table.navbox.v2 tr+tr>th{border-top:2px solid #fdfdfd}.mw-parser-output table.navbox.v2 .navbox-subgroup .navbox-group{background:#e6e6ff}.mw-parser-output table.navbox.v2 .navbox-inner>tbody>tr>th+td,.mw-parser-output table.navbox.v2 .navbox-subgroup>tbody>tr>th+td,.mw-parser-output table.navbox-columns-table.v2>tbody>tr>th+th,.mw-parser-output table.navbox-columns-table.v2>tbody>tr>th+td,.mw-parser-output table.navbox-columns-table.v2>tbody>tr>td+td{border-left:2px solid #fdfdfd}.mw-parser-output .navbox span.rok{display:inline-block;width:4em;padding-right:0.5em;text-align:right}.mw-parser-output .navbox.v2.medaliści .opis1{background:gold}.mw-parser-output .navbox.v2.medaliści .opis2{background:silver}.mw-parser-output .navbox.v2.medaliści .opis3{background:#c96}.mw-parser-output .navbox{padding:3px}.mw-parser-output .navbox.pionowy .before,.mw-parser-output .navbox.pionowy .after{padding:0.5em 0;text-align:center}.mw-parser-output .navbox>.caption{background:#ccf;text-align:center;font-weight:bold}.mw-parser-output .navbox .tnavbar{font-weight:normal;font-size:xx-small;white-space:nowrap;padding:0}.mw-parser-output .navbox>.tnavbar{margin-left:1em;float:left}.mw-parser-output .navbox .below>hr+.tnavbar{margin-left:auto;margin-right:auto}.mw-parser-output .navbox .below>.tnavbar:before{content:"Ten szablon: "}.mw-parser-output .navbox .tnavbar li:after{content:" · "}.mw-parser-output .navbox .tnavbar li:last-child:after{content:none}.mw-parser-output .navbox hr{margin:0.2em 1em}.mw-parser-output .navbox .title{background:#ddf;text-align:center;font-weight:bold}.mw-parser-output .navbox>.mw-collapsible-content{margin-top:2px;padding:0;font-size:smaller}.mw-parser-output .navbox .above+div,.mw-parser-output .navbox .above+.navbox-main-content,.mw-parser-output .navbox .below,.mw-parser-output .navbox .title+.grid{margin-top:2px}.mw-parser-output .navbox>.mw-collapsible-content>.above,.mw-parser-output .navbox>.mw-collapsible-content>.below{background:#ddf;text-align:center;margin-left:auto;margin-right:auto}.mw-parser-output .navbox:not(.pionowy) .flex{display:flex;flex-direction:row}.mw-parser-output .navbox .flex>.before,.mw-parser-output .navbox .flex>.after{align-self:center;text-align:center}.mw-parser-output .navbox .flex>.navbox-main-content{flex-grow:1}.mw-parser-output .navbox:not(.pionowy) .before+.navbox-main-content{margin-left:0.5em}.mw-parser-output .navbox:not(.pionowy) .navbox-main-content+.after{margin-left:0.5em}.mw-parser-output .navbox .inner-columns,.mw-parser-output .navbox .inner-group,.mw-parser-output .navbox .inner-standard{border-spacing:0;border-collapse:collapse;width:100%}.mw-parser-output .navbox .inner-standard>tbody>tr>.opis{text-align:right;vertical-align:middle}.mw-parser-output .navbox .inner-standard>tbody>tr>.opis+.spis{border-left:2px solid white;text-align:left}.mw-parser-output .navbox .inner-standard>tbody>tr>td{padding:0;width:100%}.mw-parser-output .navbox .inner-standard>tbody>tr>td:first-child{text-align:center}.mw-parser-output .navbox .inner-standard .inner-standard>tbody>tr>td{text-align:left}.mw-parser-output .navbox .inner-standard>tbody>tr>.navbox-odd,.mw-parser-output .navbox .inner-standard>tbody>tr>.navbox-even{padding:0 0.3em}.mw-parser-output .navbox .inner-standard>tbody>tr+tr>th,.mw-parser-output .navbox .inner-standard>tbody>tr+tr>td{border-top:2px solid white}.mw-parser-output .navbox .inner-standard>tbody>tr>th+td{border-left:2px solid white}.mw-parser-output .navbox .inner-columns{table-layout:fixed}.mw-parser-output .navbox .inner-columns>tbody>tr>th,.mw-parser-output .navbox .inner-columns>tbody>tr>td{padding:0;border-left:2px solid white;border-right:2px solid white}.mw-parser-output .navbox .inner-columns>tbody>tr+tr>td{border-top:2px solid white}.mw-parser-output .navbox .inner-columns>tbody>tr>th:first-child,.mw-parser-output .navbox .inner-columns>tbody>tr>td:first-child{border-left:0}.mw-parser-output .navbox .inner-columns>tbody>tr>th:last-child,.mw-parser-output .navbox .inner-columns>tbody>tr>td:last-child{border-right:0}.mw-parser-output .navbox .inner-group>div+div,.mw-parser-output .navbox .inner-group>div>div+div,.mw-parser-output .navbox .inner-group>div>div+table{margin-top:2px}.mw-parser-output .navbox .inner-group>div>.opis,.mw-parser-output .navbox .inner-group>div>.spis{padding:0.1em 1em;text-align:center}.mw-parser-output .navbox>.mw-collapsible-toggle,.mw-parser-output .navbox .inner-group>div.mw-collapsible>.mw-collapsible-toggle{width:4em;text-align:right}.mw-parser-output .navbox>.fakebar,.mw-parser-output .navbox .inner-group>div.mw-collapsible>.fakebar{float:left;width:4em;height:1em}.mw-parser-output .navbox .opis{background:#ddf;padding:0 1em;white-space:nowrap;font-weight:bold}.mw-parser-output .navbox .navbox-odd{}.mw-parser-output .navbox .navbox-even{background:#f7f7f7}.mw-parser-output .navbox .inner-group>div>div+div{background:transparent}.mw-parser-output .navbox p{margin:0;padding:0.3em 0}.mw-parser-output .navbox .spis>ul,.mw-parser-output .navbox .spis>dl,.mw-parser-output .navbox .spis>ol{}.mw-parser-output .navbox.medaliści .opis.a_1,.mw-parser-output .navbox.medaliści .a_1 .opis{background:gold}.mw-parser-output .navbox.medaliści .opis.a_2,.mw-parser-output .navbox.medaliści .a_2 .opis{background:silver}.mw-parser-output .navbox.medaliści .opis.a_3,.mw-parser-output .navbox.medaliści .a_3 .opis{background:#c96}.mw-parser-output .navbox .navbox-main-content>ul,.mw-parser-output .navbox .navbox-main-content>dl,.mw-parser-output .navbox .navbox-main-content>ol{column-width:24em;text-align:left}.mw-parser-output .navbox ul{list-style:none}.mw-parser-output .navbox .references{background:transparent}.mw-parser-output .navbox .hwrap .hlist dd,.mw-parser-output .navbox .hwrap .hlist dt,.mw-parser-output .navbox .hwrap .hlist li{white-space:normal}.mw-parser-output .navbox .rok{display:inline-block;width:4em;padding-right:0.5em;text-align:right}.mw-parser-output .navbox .navbox-statistics{margin-top:2px;border-top:1px solid gray;text-align:center;font-size:small} Funkcje matematyczne

    Funkcje parzyste i nieparzystefunkcje cechujące się pewną symetrią przy zmianie znaku argumentu. Prowadzi to również do symetrii ich wykresów. Funkcja jest:

    Grupa – jedna ze struktur algebraicznych: zbiór niepusty, na którym określono pewne łączne działanie dwuargumentowe wewnętrzne, dla którego istnieje element odwrotny do każdego elementu oraz element neutralny. Można powiedzieć, że grupą jest monoid, w którym każdy element ma element odwrotny. Dział matematyki badający własności grup nazywa się teorią grup.Podzbiór – pewna „część” danego zbioru, czyli dla danego zbioru, nazywanego nadzbiorem, zbiór składający się z pewnej liczby jego elementów, np. żadnego, jednego, wszystkich. Pierwszy przypadek nazywa się podzbiorem pustym, drugi – podzbiorem jednoelementowym lub singletonem, trzeci – podzbiorem niewłaściwym.
  • parzysta, jeżeli spełnia równanie (symetria względem zmiany znaku argumentu);
  • nieparzysta, jeżeli spełnia równanie (symetria względem jednoczesnej zmiany znaku argumentu i wartości funkcji).
  • Równania te muszą być prawdziwe dla wszystkich należących do dziedziny funkcji Powyższe równości wymagają, aby wraz z do dziedziny należał również punkt stąd dziedziny funkcji parzystych i nieparzystych muszą być symetryczne względem zera.

    Funkcje hiperboliczne – funkcje zmiennej rzeczywistej lub zespolonej będących sumą, różnicą lub ilorazem funkcji eksponencjalnych określone następująco: Przestrzeń liniowa lub wektorowa – w matematyce zbiór obiektów (nazywanych "wektorami"), które mogą być, nieformalnie rzecz ujmując, skalowane i dodawane. Formalnie jest to zbiór z określonymi dwoma działaniami: dodawaniem elementów tej przestrzeni (wektorów) i mnożeniem przez elementy ustalonego ciała, które związane są ze sobą poniższymi aksjomatami. Przestrzenie liniowe to podstawowy obiekt badań algebry liniowej i analizy funkcjonalnej. Znajdują zastosowanie niemal we wszystkich gałęziach matematyki, naukach ścisłych i inżynierii.

    Przykłady[ | edytuj kod]

    Istnieją funkcje, które nie są ani parzyste, ani nieparzyste, np. niestała funkcja wykładnicza, a jedynymi funkcjami będącymi jednocześnie parzystymi i nieparzystymi są funkcje stałe równe zeru w każdym punkcie swojej dziedziny.

    Wykres funkcji – potocznie graficzne przedstawienie funkcji. Ogólniej, w matematyce wykresem funkcji f : X → Y {displaystyle f:X o Y} , gdzie X {displaystyle X} i Y {displaystyle Y} są dowolnymi zbiorami, nazywamy podzbiór S ⊂ X × Y {displaystyle Ssubset X imes Y} dany wzorem:Symetria (gr. συμμετρια, od συμ, podobny oraz μετρια, miara) – właściwość figury, bryły lub ogólnie dowolnego obiektu matematycznego (można mówić np. o symetrii równań), polegająca na tym, iż istnieje należące do pewnej zadanej klasy przekształcenie nie będące identycznością, które odwzorowuje dany obiekt na niego samego. Brak takiej właściwości nazywany jest asymetrią. W zależności od klasy dopuszczalnych przekształceń wyróżnia się rozmaite rodzaje symetrii. Tym samym pojęciem określa się nie tylko obiekty, ale też same przekształcenia.
    Funkcje parzyste
  • wartość bezwzględna
  • funkcja potęgowa o parzystym wykładniku, gdzie
  • funkcja trygonometryczna
  • funkcja hiperboliczna
  • wielomiany zawierające niezerowe współczynniki tylko przy parzystych potęgach zmiennej (np. ),
  • funkcja sinc,
  • funkcja Dirichleta,
  • funkcja Weierstrassa,
  • funkcje prostokątna i trójkątna.
  • Funkcje nieparzyste
  • funkcja liniowa (proporcjonalność prosta),
  • funkcja potęgowa o nieparzystym wykładniku:
  • funkcje trygonometryczne   i  
  • funkcje hiperboliczne   i  
  • wielomiany o niezerowych współczynnikach tylko przy nieparzystych potęgach zmiennej (np. ),
  • funkcja signum,
  • funkcja błędu Gaussa,
  • funkcja Gudermanna,
  • całka Fresnela.
  • Funkcja Weierstrassa - pierwszy opublikowany przykład rzeczywistej funkcji ciągłej, nieróżniczkowalnej w żadnym punkcie. Nazwa pochodzi od nazwiska odkrywcy, Karla Weierstraßa.Pierścień – struktura formalizująca własności algebraiczne liczb całkowitych oraz arytmetyki modularnej; intuicyjnie zbiór, którego elementy mogą być bez przeszkód dodawane, odejmowane i mnożone, lecz niekoniecznie dzielone. Badanie pierścieni umożliwiło uogólnienie innych pojęć matematycznych takich, jak np. liczby pierwsze (przez ideały pierwsze), wielomiany, ułamki oraz rozwinięcie teorii podzielności i wskazania przy tym najogólniejszej struktury, w której możliwe jest stosowanie algorytmu Euklidesa (tzw. pierścień Euklidesa). Dział matematyki opisujący te struktury nazywa się teorią pierścieni.


    Podstrony: 1 [2] [3]




    Warto wiedzieć że... beta

    Funkcja Dirichleta – funkcja charakterystyczna zbioru liczb wymiernych Q {displaystyle mathbb {Q} } , tzn. funkcja zmiennej rzeczywistej, która przyjmuje wartość 1 , {displaystyle 1,} gdy argument jest liczbą wymierną i wartość 0 , {displaystyle 0,} gdy argument jest liczbą niewymierną.
    Funkcje trygonometryczne (etym.) – funkcje matematyczne wyrażające między innymi stosunki między długościami boków trójkąta prostokątnego względem miar jego kątów wewnętrznych.
    Funkcja Gudermanna - funkcja specjalna nazwana od imienia niemieckiego matematyka, Christopha Gudermanna, zwana także amplitudą hiperboliczną lub gudermanianem, wyraża się wzorem:
    Funkcja (łac. functio, -onis, „odbywanie, wykonywanie, czynność”) – dla danych dwóch zbiorów X i Y przyporządkowanie każdemu elementowi zbioru X dokładnie jednego elementu zbioru Y. Oznacza się ją na ogół f, g, h itd.
    Zbiór liczb rzeczywistych – uzupełnienie zbioru liczb wymiernych. Zbiór liczb rzeczywistych zawiera m.in. liczby naturalne, ujemne, całkowite, pierwiastki liczb dodatnich, wymierne, niewymierne, przestępne, itd. Z drugiej strony na liczby rzeczywiste można też patrzeć jak na szczególne przypadki liczb zespolonych.
    Proporcjonalność prosta – taka zależność między dwiema zmiennymi wielkościami x i y, w której iloraz tych wielkości jest stały (x/y = const). Prowadzi to do wzoru
    Funkcja błędu Gaussa — funkcja nieelementarna, która występuje w rachunku prawdopodobieństwa, statystyce oraz w teorii równań różniczkowych cząstkowych. Jest zdefiniowana jako

    Reklama

    Czas generowania strony: 0.019 sek.