• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Funkcje hiperboliczne



    Podstrony: 1 [2] [3] [4] [5]
    Przeczytaj także...
    Funkcje hiperboliczne odwrotne (funkcje polowe, funkcje area) – funkcje odwrotne do funkcji hiperbolicznych. Ich nazwy odzwierciedlają fakt, że wartości tych funkcji są równe polom odpowiednich wycinków hiperboli jednostkowej x 2 − y 2 = 1 {displaystyle x^{2}-y^{2}=1;} , w analogiczny sposób, jak Funkcje odwrotne do trygonometrycznych są równe polom wycinków koła jednostkowego x 2 + y 2 = 1. {displaystyle x^{2}+y^{2}=1.;} Okrąg jednostkowy – okrąg o promieniu jednostkowym, tzn. równym 1. Często, szczególnie w trygonometrii, „okrąg jednostkowy” oznacza okrąg o promieniu 1 i środku w początku, tzn. punkcie ( 0 , 0 ) {displaystyle (0,0),} , układu współrzędnych kartezjańskich płaszczyzny euklidesowej. Często oznacza się go symbolem S 1 {displaystyle mathrm {S} ^{1}} ; jego uogólnieniem na wyższe wymiary jest sfera jednostkowa.
    tbody>tr>th.navbox-title>.tytuł{font-size:110%;padding-left:0;padding-right:0}.mw-parser-output .navbox-collapse{float:right;width:6em;height:1.6em}.mw-parser-output .navbox-tnavbar{float:left;width:6em;height:1.6em;text-align:left}.mw-parser-output table.navbox.v2 .navbox-group{text-align:right;padding-left:1em;padding-right:1em}.mw-parser-output table.navbox.v2 .navbox-list{width:100%;padding:0px}.mw-parser-output table.navbox.v2 .navbox-grafika-lewa{padding:0 2px 0 0}.mw-parser-output table.navbox.v2 .navbox-grafika{padding:0 0 0 2px}.mw-parser-output table.navbox.v2 .navbox-list.hlist{padding:0em 0.25em}.mw-parser-output table.navbox.v2 th.navbox-group+td.navbox-list{text-align:left}.mw-parser-output table.navbox.v2 th.navbox-group td.navbox-list{text-align:left}.mw-parser-output table.navbox-columns-table.v2 .navbox-column{width:100%;padding:0px}.mw-parser-output table.navbox-columns-table.v2{table-layout:fixed}.mw-parser-output table.navbox-columns-table.v2>tbody>tr>td{vertical-align:top}.mw-parser-output table.navbox-columns-table.v2>tbody>.nagłówek>.navbox-abovebelow{vertical-align:bottom}.mw-parser-output .navbox-column>ul{column-width:24em;text-align:left;list-style:none}.mw-parser-output .navbox-column>ul>li{white-space:nowrap;padding:0;margin:0}.mw-parser-output .navbox-tnavbar{color:#002bb8}.mw-parser-output .navbox-tnavbar a{color:#002bb8}.mw-parser-output table.navbox.v2 .navbox-group{background:#ddddff}.mw-parser-output table.navbox.v2 tr+tr>td,.mw-parser-output table.navbox.v2 tr+tr>th{border-top:2px solid #fdfdfd}.mw-parser-output table.navbox.v2 .navbox-subgroup .navbox-group{background:#e6e6ff}.mw-parser-output table.navbox.v2 .navbox-inner>tbody>tr>th+td,.mw-parser-output table.navbox.v2 .navbox-subgroup>tbody>tr>th+td,.mw-parser-output table.navbox-columns-table.v2>tbody>tr>th+th,.mw-parser-output table.navbox-columns-table.v2>tbody>tr>th+td,.mw-parser-output table.navbox-columns-table.v2>tbody>tr>td+td{border-left:2px solid #fdfdfd}.mw-parser-output .navbox span.rok{display:inline-block;width:4em;padding-right:0.5em;text-align:right}.mw-parser-output .navbox.v2.medaliści .opis1{background:gold}.mw-parser-output .navbox.v2.medaliści .opis2{background:silver}.mw-parser-output .navbox.v2.medaliści .opis3{background:#c96}.mw-parser-output .navbox{padding:3px}.mw-parser-output .navbox.pionowy .before,.mw-parser-output .navbox.pionowy .after{padding:0.5em 0;text-align:center}.mw-parser-output .navbox>.caption{background:#ccf;text-align:center;font-weight:bold}.mw-parser-output .navbox .tnavbar{font-weight:normal;font-size:xx-small;white-space:nowrap;padding:0}.mw-parser-output .navbox>.tnavbar{margin-left:1em;float:left}.mw-parser-output .navbox .below>hr+.tnavbar{margin-left:auto;margin-right:auto}.mw-parser-output .navbox .below>.tnavbar:before{content:"Ten szablon: "}.mw-parser-output .navbox .tnavbar li:after{content:" · "}.mw-parser-output .navbox .tnavbar li:last-child:after{content:none}.mw-parser-output .navbox hr{margin:0.2em 1em}.mw-parser-output .navbox .title{background:#ddf;text-align:center;font-weight:bold}.mw-parser-output .navbox>.mw-collapsible-content{margin-top:2px;padding:0;font-size:smaller}.mw-parser-output .navbox .above+div,.mw-parser-output .navbox .above+.navbox-main-content,.mw-parser-output .navbox .below,.mw-parser-output .navbox .title+.grid{margin-top:2px}.mw-parser-output .navbox>.mw-collapsible-content>.above,.mw-parser-output .navbox>.mw-collapsible-content>.below{background:#ddf;text-align:center;margin-left:auto;margin-right:auto}.mw-parser-output .navbox:not(.pionowy) .flex{display:flex;flex-direction:row}.mw-parser-output .navbox .flex>.before,.mw-parser-output .navbox .flex>.after{align-self:center;text-align:center}.mw-parser-output .navbox .flex>.navbox-main-content{flex-grow:1}.mw-parser-output .navbox:not(.pionowy) .before+.navbox-main-content{margin-left:0.5em}.mw-parser-output .navbox:not(.pionowy) .navbox-main-content+.after{margin-left:0.5em}.mw-parser-output .navbox .inner-columns,.mw-parser-output .navbox .inner-group,.mw-parser-output .navbox .inner-standard{border-spacing:0;border-collapse:collapse;width:100%}.mw-parser-output .navbox .inner-standard>tbody>tr>.opis{text-align:right;vertical-align:middle}.mw-parser-output .navbox .inner-standard>tbody>tr>.opis+.spis{border-left:2px solid white;text-align:left}.mw-parser-output .navbox .inner-standard>tbody>tr>td{padding:0;width:100%}.mw-parser-output .navbox .inner-standard>tbody>tr>td:first-child{text-align:center}.mw-parser-output .navbox .inner-standard .inner-standard>tbody>tr>td{text-align:left}.mw-parser-output .navbox .inner-standard>tbody>tr>.navbox-odd,.mw-parser-output .navbox .inner-standard>tbody>tr>.navbox-even{padding:0 0.3em}.mw-parser-output .navbox .inner-standard>tbody>tr+tr>th,.mw-parser-output .navbox .inner-standard>tbody>tr+tr>td{border-top:2px solid white}.mw-parser-output .navbox .inner-standard>tbody>tr>th+td{border-left:2px solid white}.mw-parser-output .navbox .inner-columns{table-layout:fixed}.mw-parser-output .navbox .inner-columns>tbody>tr>th,.mw-parser-output .navbox .inner-columns>tbody>tr>td{padding:0;border-left:2px solid white;border-right:2px solid white}.mw-parser-output .navbox .inner-columns>tbody>tr>td{vertical-align:top}.mw-parser-output .navbox .inner-columns>tbody>tr+tr>td{border-top:2px solid white}.mw-parser-output .navbox .inner-columns>tbody>tr>th:first-child,.mw-parser-output .navbox .inner-columns>tbody>tr>td:first-child{border-left:0}.mw-parser-output .navbox .inner-columns>tbody>tr>th:last-child,.mw-parser-output .navbox .inner-columns>tbody>tr>td:last-child{border-right:0}.mw-parser-output .navbox .inner-columns>tbody>tr>td>ul,.mw-parser-output .navbox .inner-columns>tbody>tr>td>ol,.mw-parser-output .navbox .inner-columns>tbody>tr>td>dl{text-align:left;column-width:24em}.mw-parser-output .navbox .inner-group>div+div,.mw-parser-output .navbox .inner-group>div>div+div,.mw-parser-output .navbox .inner-group>div>div+table{margin-top:2px}.mw-parser-output .navbox .inner-group>div>.opis,.mw-parser-output .navbox .inner-group>div>.spis{padding:0.1em 1em;text-align:center}.mw-parser-output .navbox>.mw-collapsible-toggle,.mw-parser-output .navbox .inner-group>div.mw-collapsible>.mw-collapsible-toggle{width:4em;text-align:right}.mw-parser-output .navbox>.fakebar,.mw-parser-output .navbox .inner-group>div.mw-collapsible>.fakebar{float:left;width:4em;height:1em}.mw-parser-output .navbox .opis{background:#ddf;padding:0 1em;white-space:nowrap;font-weight:bold}.mw-parser-output .navbox .navbox-odd{}.mw-parser-output .navbox .navbox-even{background:#f7f7f7}.mw-parser-output .navbox .inner-group>div>div+div{background:transparent}.mw-parser-output .navbox p{margin:0;padding:0.3em 0}.mw-parser-output .navbox .spis>ul,.mw-parser-output .navbox .spis>dl,.mw-parser-output .navbox .spis>ol{}.mw-parser-output .navbox.medaliści .opis.a1,.mw-parser-output .navbox.medaliści .a1 .opis{background:gold}.mw-parser-output .navbox.medaliści .opis.a2,.mw-parser-output .navbox.medaliści .a2 .opis{background:silver}.mw-parser-output .navbox.medaliści .opis.a3,.mw-parser-output .navbox.medaliści .a3 .opis{background:#c96}.mw-parser-output .navbox .navbox-main-content>ul,.mw-parser-output .navbox .navbox-main-content>dl,.mw-parser-output .navbox .navbox-main-content>ol{column-width:24em;text-align:left}.mw-parser-output .navbox ul{list-style:none}.mw-parser-output .navbox .references{background:transparent}.mw-parser-output .navbox .hwrap .hlist dd,.mw-parser-output .navbox .hwrap .hlist dt,.mw-parser-output .navbox .hwrap .hlist li{white-space:normal}.mw-parser-output .navbox .rok{display:inline-block;width:4em;padding-right:0.5em;text-align:right}.mw-parser-output .navbox .navbox-statistics{margin-top:2px;border-top:1px solid gray;text-align:center;font-size:small}.mw-parser-output .navbox-summary>.title{font-weight:bold;font-size:larger}.mw-parser-output .navbox:not(.grupa-szablonów) .navbox{margin:0;border:0;padding:0} Funkcje matematyczne

    Funkcje hiperbolicznefunkcje zmiennej rzeczywistej lub zespolonej będących sumą, różnicą lub ilorazem funkcji wykładniczych określone następująco:

    Vincenzo Riccati (ur. 11 stycznia 1707 w Castelfranco Veneto, zm. 17 stycznia 1775 w Treviso) – włoski uczony i jezuita. Zajmował się przede wszystkim matematyką, interesowały go zagadnienia związane z rachunkiem różniczkowym i całkowym oraz funkcje hiperboliczne.Okrąg – brzeg koła; zbiór wszystkich punktów płaszczyzny euklidesowej odległych od ustalonego punktu, nazywanego środkiem, o zadaną odległość, nazywaną promieniem.
  • sinus hiperboliczny: (oznaczany również ),
  • cosinus hiperboliczny: (oznaczany również ),
  • tangens hiperboliczny: (oznaczany również lub ),
  • cotangens hiperboliczny: (oznaczany również lub ),
  • secans hiperboliczny:
  • cosecans hiperboliczny:
  • Hiperbola z funkcji cosh(t) i sinh(t).png

    Złoty podział (łac. sectio aurea), podział harmoniczny, złota proporcja, boska proporcja (łac. divina proportio) – podział odcinka na dwie części tak, by stosunek długości dłuższej z nich do krótszej był taki sam, jak całego odcinka do części dłuższej. Innymi słowy: długość dłuższej części ma być średnią geometryczną długości krótszej części i całego odcinka. Rysunek obok ilustruje ten związek geometrycznie. Wyrażony algebraicznie:MathWorld – encyklopedia matematyczna online, sponsorowana przez Wolfram Research, twórcę i producenta programu Mathematica; współsponsorem jest National Science Foundation (National Science Digital Library).

    Funkcje te mają interesujące własności matematyczne analogiczne do własności funkcji trygonometrycznych. Nazwę swoją zawdzięczają temu, że para liczb (cosh(t),sinh(t)) tworzy wykres hiperboli (jej prawej, dodatniej części). Zostały wprowadzone do nauki przez włoskiego matematyka Vincenzo Riccatiego, który publikował swoje rozważania w Opusculorum ad res physicas et mathematicas pertinentium, wydawanym między 1757 a 1762 rokiem. Nadał im on nazwy sinus i cosinus hiperbolico i zastosował skróty Sh i Ch, stosowane do dziś w Rosji i we Francji. Upowszechnił je szwajcarski matematyk Johann Heinrich Lambert, pokazując ich zastosowanie w trygonometrii w dziele Mémoire sur quelques propriétés remarquables des quantités transcendentes circulaires et logarithmiques (1762). Lambert zostawił im nazwy zaproponowane przez Riccatiego, ale nadał im skróty sinh i cosh stosowane do dnia dzisiejszego.

    Wykres funkcji – potocznie graficzne przedstawienie funkcji. Ogólniej, w matematyce wykresem funkcji f : X → Y {displaystyle f:X o Y} , gdzie X {displaystyle X} i Y {displaystyle Y} są dowolnymi zbiorami, nazywamy podzbiór S ⊂ X × Y {displaystyle Ssubset X imes Y} dany wzorem:Złota funkcja – w matematyce, funkcja zmiennej rzeczywistej, której wykresem w kartezjańskim układzie współrzędnych XY jest górna gałąź hiperboli:

    Związki trygonometryczne[ | edytuj kod]

     Zapoznaj się również z: funkcje trygonometryczne.

    Zbiór punktów płaszczyzny o współrzędnych postaci jest okręgiem (jednostkowym), analogicznie zbiór punktów o współrzędnych postaci wyznacza hiperbolę.

    Funkcje trygonometryczne (etym.) – funkcje matematyczne wyrażające między innymi stosunki między długościami boków trójkąta prostokątnego względem miar jego kątów wewnętrznych.Johann Heinrich Lambert (ur. 26 sierpnia 1728 w Miluzie, zm. 25 września 1777 w Berlinie) – matematyk, filozof, fizyk i astronom szwajcarski pochodzenia francuskiego.

    Prawdziwe są również wzory:

    Ponadto korzystając ze wzoru Eulera

    Krzywa łańcuchowa (linia łańcuchowa) – krzywa płaska opisująca kształt doskonale nierozciągliwej i nieskończenie wiotkiej liny o niezerowej masie swobodnie zwisającej pomiędzy dwiema różnymi podporami w jednorodnym polu grawitacyjnym.Funkcja odwrotna – funkcja przyporządkowująca wartościom jakiejś funkcji jej odpowiednie argumenty, czyli działająca odwrotnie do niej.

    można przedstawić związek funkcji hiperbolicznych z trygonometrycznymi, wyrażony w liczbach zespolonych:

    Funkcja (łac. functio, -onis, „odbywanie, wykonywanie, czynność”) – dla danych dwóch zbiorów X i Y przyporządkowanie każdemu elementowi zbioru X dokładnie jednego elementu zbioru Y. Oznacza się ją na ogół f, g, h itd.Wzór Eulera – wzór analizy zespolonej wiążący funkcje trygonometryczne z zespoloną funkcją wykładniczą określany nazwiskiem Leonharda Eulera.

    skąd:

    Zbiór liczb rzeczywistych – uzupełnienie zbioru liczb wymiernych. Zbiór liczb rzeczywistych zawiera m.in. liczby naturalne, ujemne, całkowite, pierwiastki liczb dodatnich, wymierne, niewymierne, przestępne, itd. Z drugiej strony na liczby rzeczywiste można też patrzeć jak na szczególne przypadki liczb zespolonych.Liczba urojona – liczba, która podniesiona do kwadratu daje wartość ujemną. Pojęcie to zostało wprowadzone przez Girolamo Cardano w XVI wieku, lecz nazwę nadał im Kartezjusz w 1637 roku. Nie zostały szerzej zaakceptowane aż do prac Eulera (1707–1783) i Gaussa (1777–1855).

    Ponieważ funkcje trygonometryczne są okresowe wzdłuż osi liczb rzeczywistych, to funkcje hiperboliczne są okresowe wzdłuż osi liczb urojonych z okresem (sinh, cosh, sech, csech), albo (tgh, ctgh).

    Kontrola autorytatywna – w terminologii bibliotekoznawczej określenie procedur zapewniających utrzymanie w sposób konsekwentny haseł (nazw, ujednoliconych tytułów, tytułów serii i haseł przedmiotowych) w katalogach bibliotecznych przez zastosowanie wykazu autorytatywnego zwanego kartoteką wzorcową.Funkcja monotoniczna – funkcja, która zachowuje określony rodzaj porządku zbiorów. Pojęcie powstałe pierwotnie na gruncie analizy zostało uogólnione na gruncie teorii porządku.

    Właściwości[ | edytuj kod]

  • Sinus hiperboliczny jest funkcją nieparzystą i funkcją rosnącą.
  • Cosinus hiperboliczny jest funkcją parzystą i funkcją rosnącą dla i malejącą dla
  • Tangens hiperboliczny jest funkcją nieparzystą.
  • Jeśli oznacza złotą proporcję, to:

    Hiperbola − krzywa stożkowa będąca zbiorem takich punktów, że wartość bezwzględna różnicy odległości tych punktów od dwóch punktów, nazywanych ogniskami hiperboli, jest stała.


  • Podstrony: 1 [2] [3] [4] [5]




    Reklama

    Czas generowania strony: 1.086 sek.