• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Funkcje elementarne



    Podstrony: [1] 2 [3]
    Przeczytaj także...
    Rozkład normalny, zwany też rozkładem Gaussa – jeden z najważniejszych rozkładów prawdopodobieństwa. Odgrywa ważną rolę w statystycznym opisie zagadnień przyrodniczych, przemysłowych, medycznych, społecznych itp. Wykres funkcji prawdopodobieństwa tego rozkładu jest krzywą dzwonową.Wartość bezwzględna a. moduł – dla danej liczby rzeczywistej wartość liczbowa nieuwzględniająca znaku liczby. Przykładowo Parser nie mógł rozpoznać (Nie można zapisać obrazu z wzorem w systemie plików.): 5
    Przykłady[ | edytuj kod]

    Funkcjami elementarnymi są między innymi:

  • wielomiany
  • funkcje wymierne
  • funkcje niewymierne
  • funkcje hiperboliczne
  • oraz ich złożenia. Zatem funkcja jest funkcją elementarną.

    Funkcja wielu zmiennych – funkcja, której dziedzina została zdefiniowana jako podzbiór iloczynu kartezjańskiego co najmniej dwóch zbiorów. Wówczas elementy dziedziny są krotkami. Wiele podstawowych funkcji rozpatrywanych w matematyce jest funkcjami wielu zmiennych (np. działania).Funkcja wymierna – funkcja będąca ilorazem funkcji wielomianowych. Iloraz wielomianów realizujących dane funkcje wielomianowe nazywa się wyrażeniem wymiernym. Można powiedzieć, że funkcje wymierne mają się tak do funkcji wielomianowych jak liczby wymierne do liczb całkowitych.

    Przykładami funkcji, niebędących funkcjami elementarnymi, są:

  • dystrybuanta standardowego rozkładu normalnego
  • całka eliptyczna pierwszego rodzaju
  • Zobacz też[ | edytuj kod]

  • funkcje algebraiczne
  • funkcje specjalne
  • Wielomian – wyrażenie algebraiczne złożone ze zmiennych i stałych połączonych działaniami dodawania, odejmowania, mnożenia i podnoszenia do potęgi o stałym wykładniku naturalnym.Rekurencja, zwana także rekursją (ang. recursion, z łac. recurrere, przybiec z powrotem) to w logice, programowaniu i w matematyce odwoływanie się np. funkcji lub definicji do samej siebie.


    Podstrony: [1] 2 [3]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Funkcje specjalne – umowna nazwa grupy funkcji, które nie są funkcjami elementarnymi, a jednocześnie odgrywają ważną rolę w wielu dziedzinach nauki. Funkcje specjalne zostały szczegółowo przebadane i stablicowane, a wiele programów komputerowych może obliczać ich wartości z dowolną dokładnością. Podstawowe funkcje specjalne są rozwiązaniami równań różniczkowych liniowych rzędu drugiego, o zmiennych współczynnikach. Niektóre funkcje specjalne stanowią rozwiązania równań różniczkowych nieliniowych drugiego i wyższych rzędów.
    Funkcje hiperboliczne – funkcje zmiennej rzeczywistej lub zespolonej będących sumą, różnicą lub ilorazem funkcji eksponencjalnych określone następująco:
    Funkcje cyklometryczne (funkcje kołowe) – funkcje odwrotne do funkcji trygonometrycznych ograniczonych do pewnych przedziałów.
    Liczby naturalne – liczby służące podawaniu liczności (trzy osoby, zob. liczebnik główny/kardynalny) i ustalania kolejności (trzecia osoba, zob. liczebnik porządkowy), poddane w matematyce dalszym uogólnieniom (odpowiednio: liczby kardynalne, liczby porządkowe). Badaniem własności liczb naturalnych zajmują się arytmetyka i teoria liczb. Według finitystów, zwolenników skrajnego nurtu filozofii matematyki, są to jedyne liczby, jakimi powinna zajmować się matematyka - słynne jest stwierdzenie propagatora arytmetyzacji wszystkich dziedzin matematyki Leopolda Kroneckera: Liczby całkowite stworzył dobry Bóg. Reszta jest dziełem człowieka.
    Funkcje trygonometryczne (etym.) – funkcje matematyczne wyrażające między innymi stosunki między długościami boków trójkąta prostokątnego względem miar jego kątów wewnętrznych.
    Funkcja algebraiczna – funkcja, dla której istnieją takie wielomiany Wn(x), Wn-1(x), ..., W1(x), W0(x) nie wszystkie równe tożsamościowo zeru, że dla każdego x z dziedziny funkcji spełnione jest równanie
    Funkcja (łac. functio, -onis, „odbywanie, wykonywanie, czynność”) – dla danych dwóch zbiorów X i Y przyporządkowanie każdemu elementowi zbioru X dokładnie jednego elementu zbioru Y. Oznacza się ją na ogół f, g, h itd.

    Reklama

    Czas generowania strony: 0.012 sek.