• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Funkcje cyklometryczne

    Przeczytaj także...
    Wykres funkcji – potocznie graficzne przedstawienie funkcji. Ogólniej, w matematyce wykresem funkcji f : X → Y {displaystyle f:X o Y} , gdzie X {displaystyle X} i Y {displaystyle Y} są dowolnymi zbiorami, nazywamy podzbiór S ⊂ X × Y {displaystyle Ssubset X imes Y} dany wzorem:Przedział – zbiór elementów danego zbioru częściowo uporządkowanego, zawartych między dwoma ustalonymi elementami tego zbioru, nazywanymi początkiem i końcem przedziału.
    Funkcje trygonometryczne (etym.) – funkcje matematyczne wyrażające między innymi stosunki między długościami boków trójkąta prostokątnego względem miar jego kątów wewnętrznych.
    tbody>tr>th.navbox-title>.tytuł{font-size:110%;padding-left:0;padding-right:0}.mw-parser-output .navbox-collapse{float:right;width:6em;height:1.6em}.mw-parser-output .navbox-tnavbar{float:left;width:6em;height:1.6em;text-align:left}.mw-parser-output table.navbox.v2 .navbox-group{text-align:right;padding-left:1em;padding-right:1em}.mw-parser-output table.navbox.v2 .navbox-list{width:100%;padding:0px}.mw-parser-output table.navbox.v2 .navbox-grafika-lewa{padding:0 2px 0 0}.mw-parser-output table.navbox.v2 .navbox-grafika{padding:0 0 0 2px}.mw-parser-output table.navbox.v2 .navbox-list.hlist{padding:0em 0.25em}.mw-parser-output table.navbox.v2 th.navbox-group+td.navbox-list{text-align:left}.mw-parser-output table.navbox.v2 th.navbox-group td.navbox-list{text-align:left}.mw-parser-output table.navbox-columns-table.v2 .navbox-column{width:100%;padding:0px}.mw-parser-output table.navbox-columns-table.v2{table-layout:fixed}.mw-parser-output table.navbox-columns-table.v2>tbody>tr>td{vertical-align:top}.mw-parser-output table.navbox-columns-table.v2>tbody>.nagłówek>.navbox-abovebelow{vertical-align:bottom}.mw-parser-output .navbox-column>ul{column-width:24em;text-align:left;list-style:none}.mw-parser-output .navbox-column>ul>li{white-space:nowrap;padding:0;margin:0}.mw-parser-output .navbox-tnavbar{color:#002bb8}.mw-parser-output .navbox-tnavbar a{color:#002bb8}.mw-parser-output table.navbox.v2 .navbox-group{background:#ddddff}.mw-parser-output table.navbox.v2 tr+tr>td,.mw-parser-output table.navbox.v2 tr+tr>th{border-top:2px solid #fdfdfd}.mw-parser-output table.navbox.v2 .navbox-subgroup .navbox-group{background:#e6e6ff}.mw-parser-output table.navbox.v2 .navbox-inner>tbody>tr>th+td,.mw-parser-output table.navbox.v2 .navbox-subgroup>tbody>tr>th+td,.mw-parser-output table.navbox-columns-table.v2>tbody>tr>th+th,.mw-parser-output table.navbox-columns-table.v2>tbody>tr>th+td,.mw-parser-output table.navbox-columns-table.v2>tbody>tr>td+td{border-left:2px solid #fdfdfd}.mw-parser-output .navbox span.rok{display:inline-block;width:4em;padding-right:0.5em;text-align:right}.mw-parser-output .navbox.v2.medaliści .opis1{background:gold}.mw-parser-output .navbox.v2.medaliści .opis2{background:silver}.mw-parser-output .navbox.v2.medaliści .opis3{background:#c96}.mw-parser-output .navbox{border:1px solid gray;padding:3px}.mw-parser-output table.navbox+table.navbox,.mw-parser-output .navbox+.navbox{border-top:0;margin-top:0}.mw-parser-output .navbox:not(.pionowy){clear:both}.mw-parser-output .navbox.pionowy{width:250px;float:right;clear:right}.mw-parser-output .navbox.pionowy .before,.mw-parser-output .navbox.pionowy .after{padding:0.5em 0;text-align:center}.mw-parser-output .navbox>.caption{background:#ccf;text-align:center;font-weight:bold}.mw-parser-output .navbox .tnavbar{font-weight:normal;font-size:xx-small;white-space:nowrap;padding:0}.mw-parser-output .navbox>.tnavbar{margin-left:1em;float:left}.mw-parser-output .navbox .below>hr+.tnavbar{margin-left:auto;margin-right:auto}.mw-parser-output .navbox .below>.tnavbar:before{content:"Ten szablon: "}.mw-parser-output .navbox .tnavbar li:after{content:" · "}.mw-parser-output .navbox .tnavbar li:last-child:after{content:none}.mw-parser-output .navbox hr{margin:0.2em 1em}.mw-parser-output .navbox .title{background:#ddf;text-align:center;font-weight:bold}.mw-parser-output .navbox>.mw-collapsible-content{margin-top:2px;padding:0;font-size:smaller}.mw-parser-output .navbox .above+div,.mw-parser-output .navbox .above+.navbox-main-content,.mw-parser-output .navbox .below,.mw-parser-output .navbox .title+.grid{margin-top:2px}.mw-parser-output .navbox>.mw-collapsible-content>.above,.mw-parser-output .navbox>.mw-collapsible-content>.below{background:#ddf;text-align:center;margin-left:auto;margin-right:auto}.mw-parser-output .navbox:not(.pionowy) .flex{display:flex;flex-direction:row}.mw-parser-output .navbox .flex>.before,.mw-parser-output .navbox .flex>.after{align-self:center;text-align:center}.mw-parser-output .navbox .flex>.navbox-main-content{flex-grow:1}.mw-parser-output .navbox:not(.pionowy) .before+.navbox-main-content{margin-left:0.5em}.mw-parser-output .navbox:not(.pionowy) .navbox-main-content+.after{margin-left:0.5em}.mw-parser-output .navbox .inner-columns,.mw-parser-output .navbox .inner-group,.mw-parser-output .navbox .inner-standard{border-spacing:0;border-collapse:collapse;width:100%}.mw-parser-output .navbox .inner-standard>tbody>tr>.opis{text-align:right;vertical-align:middle}.mw-parser-output .navbox .inner-standard>tbody>tr>.opis+.spis{border-left:2px solid white;text-align:left}.mw-parser-output .navbox .inner-standard>tbody>tr>td{padding:0;width:100%}.mw-parser-output .navbox .inner-standard>tbody>tr>td:first-child{text-align:center}.mw-parser-output .navbox .inner-standard .inner-standard>tbody>tr>td{text-align:left}.mw-parser-output .navbox .inner-standard>tbody>tr>.navbox-odd,.mw-parser-output .navbox .inner-standard>tbody>tr>.navbox-even{padding:0 0.3em}.mw-parser-output .navbox .inner-standard>tbody>tr+tr>th,.mw-parser-output .navbox .inner-standard>tbody>tr+tr>td{border-top:2px solid white}.mw-parser-output .navbox .inner-standard>tbody>tr>th+td{border-left:2px solid white}.mw-parser-output .navbox .inner-columns{table-layout:fixed}.mw-parser-output .navbox .inner-columns>tbody>tr>th,.mw-parser-output .navbox .inner-columns>tbody>tr>td{padding:0;border-left:2px solid white;border-right:2px solid white}.mw-parser-output .navbox .inner-columns>tbody>tr+tr>td{border-top:2px solid white}.mw-parser-output .navbox .inner-columns>tbody>tr>th:first-child,.mw-parser-output .navbox .inner-columns>tbody>tr>td:first-child{border-left:0}.mw-parser-output .navbox .inner-columns>tbody>tr>th:last-child,.mw-parser-output .navbox .inner-columns>tbody>tr>td:last-child{border-right:0}.mw-parser-output .navbox .inner-group>div+div,.mw-parser-output .navbox .inner-group>div>div+div,.mw-parser-output .navbox .inner-group>div>div+table{margin-top:2px}.mw-parser-output .navbox .inner-group>div>.opis,.mw-parser-output .navbox .inner-group>div>.spis{padding:0.1em 1em;text-align:center}.mw-parser-output .navbox>.mw-collapsible-toggle,.mw-parser-output .navbox .inner-group>div.mw-collapsible>.mw-collapsible-toggle{width:4em;text-align:right}.mw-parser-output .navbox>.fakebar,.mw-parser-output .navbox .inner-group>div.mw-collapsible>.fakebar{float:left;width:4em;height:1em}.mw-parser-output .navbox .opis{background:#ddf;padding:0 1em;white-space:nowrap;font-weight:bold}.mw-parser-output .navbox .navbox-odd{}.mw-parser-output .navbox .navbox-even{background:#f7f7f7}.mw-parser-output .navbox .inner-group>div>div+div{background:transparent}.mw-parser-output .navbox p{margin:0;padding:0.3em 0}.mw-parser-output .navbox .spis>ul,.mw-parser-output .navbox .spis>dl,.mw-parser-output .navbox .spis>ol{}.mw-parser-output .navbox.medaliści .opis.a_1,.mw-parser-output .navbox.medaliści .a_1 .opis{background:gold}.mw-parser-output .navbox.medaliści .opis.a_2,.mw-parser-output .navbox.medaliści .a_2 .opis{background:silver}.mw-parser-output .navbox.medaliści .opis.a_3,.mw-parser-output .navbox.medaliści .a_3 .opis{background:#c96}.mw-parser-output .navbox .navbox-main-content>ul,.mw-parser-output .navbox .navbox-main-content>dl,.mw-parser-output .navbox .navbox-main-content>ol{column-width:24em;text-align:left}.mw-parser-output .navbox ul{list-style:none}.mw-parser-output .navbox .references{background:transparent}.mw-parser-output .navbox .hwrap .hlist dd,.mw-parser-output .navbox .hwrap .hlist dt,.mw-parser-output .navbox .hwrap .hlist li{white-space:normal}.mw-parser-output .navbox .rok{display:inline-block;width:4em;padding-right:0.5em;text-align:right}.mw-parser-output .navbox .navbox-statistics{margin-top:2px;border-top:1px solid gray;text-align:center;font-size:small} Funkcje matematyczne

    Funkcje cyklometryczne (funkcje kołowe) – funkcje odwrotne do funkcji trygonometrycznych ograniczonych do pewnych przedziałów.

    Funkcja odwrotna – funkcja przyporządkowująca wartościom jakiejś funkcji jej odpowiednie argumenty, czyli działająca odwrotnie do niej.Funkcja (łac. functio, -onis, „odbywanie, wykonywanie, czynność”) – dla danych dwóch zbiorów X i Y przyporządkowanie każdemu elementowi zbioru X dokładnie jednego elementu zbioru Y. Oznacza się ją na ogół f, g, h itd.

    Funkcje trygonometryczne rozpatrywane na tych przedziałach są różnowartościowe i mają funkcje odwrotne. Tak więc:

  • arcus sinus (arcsin) jest funkcją odwrotną do funkcji sinus rozpatrywanej na przedziale W przedziale tym sinus jest funkcją rosnącą (zatem różnowartościową), wobec czego ma funkcję odwrotną, która jest określona na przedziale (czyli obrazie przedziału przez funkcję ).
  • arcus cosinus (arccos) jest funkcją odwrotną do funkcji cosinus rozpatrywanej na przedziale W przedziale tym cosinus jest funkcją malejącą (zatem różnowartościową), wobec czego ma funkcję odwrotną, która jest określona na przedziale (czyli obrazie przedziału przez funkcję ).
  • arcus tangens (arctg) jest funkcją odwrotną do funkcji tangens rozpatrywanej na przedziale W przedziale tym tangens jest funkcją rosnącą (zatem różnowartościową), wobec czego ma funkcję odwrotną, która jest określona w zbiorze (czyli obrazie przedziału przez funkcję ).
  • arcus cotangens (arcctg) jest funkcją odwrotną do funkcji cotangens rozpatrywanej na przedziale W przedziale tym cotangens jest funkcją malejącą (zatem różnowartościową), wobec czego ma funkcję odwrotną, która jest określona w zbiorze (czyli obrazie przedziału przez funkcję ).
  • arcus secans (arcsec) jest funkcją odwrotną do funkcji secans rozpatrywanej na przedziale W przedziale tym secans jest funkcją rosnącą w każdym z przedziałów (zatem różnowartościową): wobec czego ma funkcję odwrotną, która jest określona na przedziale (czyli obrazie przedziału przez funkcję ).
  • arcus cosecans (arccsc) jest funkcją odwrotną do funkcji cosecans rozpatrywanej na przedziale W przedziale tym cosecans jest funkcją malejącą w każdym z przedziałów (zatem różnowartościową): wobec czego ma funkcję odwrotną, która jest określona na przedziale (czyli obrazie przedziału przez funkcję ).
  • Zgodnie z określeniem funkcji odwrotnej:

    Funkcja różnowartościowa (iniekcja, funkcja 1-1) – funkcja, której każdy element przeciwdziedziny przyjmowany jest co najwyżej raz.
  • gdy
  • gdy
  • gdy
  • gdy
  • gdy
  • gdy
  • Jak w przypadku funkcji trygonometrycznych nawiasów wokół argumentów możemy nie stawiać, chyba że prowadziłoby to do niejednoznaczności.

    Własności funkcji wynikają natychmiast z twierdzeń o funkcjach odwrotnych. Wszystkie z nich są ciągłe i różniczkowalne.

  • arcus sinus jest funkcją rosnącą. Jej dziedziną jest a przeciwdziedziną
  • arcus cosinus jest funkcją malejącą. Jej dziedziną jest a przeciwdziedziną
  • arcus tangens jest funkcją rosnącą. Jej dziedziną jest a przeciwdziedziną
  • arcus cotangens jest funkcją malejącą. Jej dziedziną jest a przeciwdziedziną
  • arcus secans jest funkcją rosnącą w każdym z przedziałów: Jej dziedziną jest a przeciwdziedziną
  • arcus cosecans jest funkcją malejącą w każdym z przedziałów: Jej dziedziną jest a przeciwdziedziną
  • Zależności między funkcjami cyklometrycznymi[ | edytuj kod]

    Argumenty ujemne[ | edytuj kod]

    Odwrotności argumentów[ | edytuj kod]

    Pochodne i całki[ | edytuj kod]

    Pochodne[ | edytuj kod]


  • Całki[ | edytuj kod]

  • Przykłady[ | edytuj kod]

  • Oto wykresy kolejnych funkcji trygonometrycznych i cyklometrycznych, które parami są symetryczne względem prostej

    Funkcje:
    Funkcje:
    Funkcje:
    Funkcje:




    Reklama

    Czas generowania strony: 1.052 sek.