• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Funkcje Blasiusa



    Podstrony: [1] [2] 3
    Przeczytaj także...
    Nieliniowość – cecha układu polegająca na tym, że wartość wyjściowa nie jest wprost proporcjonalna do danych wejściowych.Punkt przegięcia jest w analizie matematycznej punktem na wykresie funkcji, w którym zachodzi zmiana jej wypukłości, tj. funkcja wypukła na lewo od tego punktu staje się wklęsła na prawo od niego lub na odwrót. Pojęcie to może być też uogólnione na inne krzywe.
    Zastosowania funkcji Blasiusa[ | edytuj kod]

    Funkcje Blasiusa wykorzystuje się w teorii laminarnej warstwy granicznej. Poza określaniem składowych prędkości można też wyznaczyć narastanie grubości warstwy granicznej od początku płyty. Grubość warstwy granicznej (rozumiana tutaj jako tzw. grubość wypierania) wyraża się wówczas wzorem:

    Równanie różniczkowe Blasiusa - nieliniowe równanie różniczkowe III rzędu występujące w teorii warstwy granicznej. Równanie to pojawiło się po raz pierwszy w podanym przez Blasiusa klasycznym rozwiązaniu samopodobnym równań Prandtla opisujących przepływ płynu w laminarnej warstwie granicznej (tzw. laminarna warstwa graniczna Balsiusa).Definicja intuicyjna: Warstwa graniczna jest to obszar w płynie w pobliżu sztywnych ścianek, w którym lepkość płynu oraz kształt ścianek wpływają decydująco na obraz przepływu.

    i po przeprowadzeniu całkowania numerycznego:

    Asymptota krzywej (z gr. ἀσύμπτοτη - zbliżać się, zbiegać) – prosta l {displaystyle l} jest asymptotą danej krzywej C {displaystyle C} (w szczególności wykresu funkcji), jeśli dla punktu oddalającego się nieograniczenie wzdłuż krzywej C {displaystyle C} odległość tego punktu od prostej l {displaystyle l} dąży do zera.Funkcje elementarne – funkcje, które powstają z funkcji, takich jak: funkcja stała, identyczność i ( x ) = x {displaystyle i(x)=x} , funkcje trygonometryczne i logarytm, za pomocą skończonej liczby operacji, takich jak dodawanie, odejmowanie, mnożenie, dzielenie, potęgowanie oraz złożenie.

    W praktyce przyjmuje się często grubość warstwy granicznej równą trzykrotnej grubości wypierania.

    Bibliografia[ | edytuj kod]

  • H. Blasius: Grenzschichten in Flüssigkeiten mit kleiner Reibung, Zeitschrift für Mathematik und Physik, 56, 1, (1908).
  • H. Schlichting: Grezschicht-Theorie, Braun, Karlsruhe, (1965).


  • Podstrony: [1] [2] 3



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Reklama

    Czas generowania strony: 0.897 sek.