Funkcje Blasiusa

Z Wikipedii, wolnej encyklopedii
Przejdź do nawigacji Przejdź do wyszukiwania

Funkcje Blasiusa – funkcje specjalne występujące w teorii warstwy granicznej. Funkcje te pojawiły się po raz pierwszy w podanym przez Blasiusa klasycznym rozwiązaniu samopodobnym równań Prandtla opisujących przepływ płynu w laminarnej warstwie granicznej (tzw. laminarna warstwa graniczna Balsiusa).

Równanie różniczkowe Blasiusa - nieliniowe równanie różniczkowe III rzędu występujące w teorii warstwy granicznej. Równanie to pojawiło się po raz pierwszy w podanym przez Blasiusa klasycznym rozwiązaniu samopodobnym równań Prandtla opisujących przepływ płynu w laminarnej warstwie granicznej (tzw. laminarna warstwa graniczna Balsiusa).Definicja intuicyjna: Warstwa graniczna jest to obszar w płynie w pobliżu sztywnych ścianek, w którym lepkość płynu oraz kształt ścianek wpływają decydująco na obraz przepływu.

Nazwa funkcji pochodzi od nazwiska niemieckiego fizyka Blasiusa.

Funkcja pierwotna Blasiusa[ | edytuj kod]

Funkcja będąca rozwiązaniem nieliniowego równania różniczkowego Blasiusa:

spełniająca zarazem warunki brzegowe:

Asymptota krzywej (z gr. ἀσύμπτοτη - zbliżać się, zbiegać) – prosta l {displaystyle l} jest asymptotą danej krzywej C {displaystyle C} (w szczególności wykresu funkcji), jeśli dla punktu oddalającego się nieograniczenie wzdłuż krzywej C {displaystyle C} odległość tego punktu od prostej l {displaystyle l} dąży do zera.Funkcje elementarne – funkcje, które powstają z funkcji, takich jak: funkcja stała, identyczność i ( x ) = x {displaystyle i(x)=x} , funkcje trygonometryczne i logarytm, za pomocą skończonej liczby operacji, takich jak dodawanie, odejmowanie, mnożenie, dzielenie, potęgowanie oraz złożenie.

Pierwotna funkcja Blasiusa nie wyraża się przez funkcje elementarne. Ze względu na nieliniowość równania różniczkowego Blasiusa jego rozwiązanie uzyskać można korzystając z rozwinięć w szeregi nieskończone, lub też stosując metody numeryczne.

Dla dodatnich wartości argumentu pierwotna funkcja Blasiusa jest regularną, monotonicznie rosnącą funkcją nie posiadającą punktów przegięcia. Posiada natomiast asymptotę ukośną do której zdążają jej wartości jeśli argument zdąża do nieskończoności.

Podstrony: 1 [2] [3]




Reklama