Funkcje Bessela

Z Wikipedii, wolnej encyklopedii
Przejdź do nawigacji Przejdź do wyszukiwania

Funkcje Bessela – rozwiązania równania różniczkowego drugiego stopnia ze zmiennymi współczynnikami (równania Bessela):

Funkcja σ (sigma) określona jest dla wszystkich liczb naturalnych jako suma wszystkich dodatnich dzielników liczby, np.Friedrich Wilhelm Bessel (ur. 22 lipca 1784 w Minden, zm. 17 marca 1846 w Królewcu, obecnie Kaliningrad, Rosja) – niemiecki astronom, geodeta i matematyk, który dokonał pomiarów położenia ok. 50 tys. gwiazd. Pozwoliło to po raz pierwszy dokładnie wyznaczyć odległości międzygwiezdne. Od roku 1810 profesor uniwersytetu w Królewcu. Założył tam obserwatorium astronomiczne, którym kierował.

gdzie jest dowolną liczbą rzeczywistą.

Szereg Laurenta funkcji zespolonej f(z) to reprezentacja tej funkcji w postaci szeregu potęgowego, w którym występują również składniki o wykładniku ujemnym. Rozwinięcia tego używa się, gdy funkcji nie można rozwinąć w szereg Taylora. Nazwa szeregu pochodzi od nazwiska Pierre Alphonse Laurenta, który opublikował go w 1843 roku.Jednostajna ciągłość jest własnością pewnej klasy funkcji, określonych między przestrzeniami metrycznymi. Jednostajna ciągłość funkcji pociąga ciągłość, ale na ogół nie odwrotnie.

Szczególnym przypadkiem, o szerokim zastosowaniu (m.in. w analizie rozkładu pola elektromagnetycznego czy przetwarzaniu sygnałów) są równania, gdzie α jest liczbą naturalną zwaną rzędem funkcji Bessela.

Ponieważ mamy do czynienia z równaniem różniczkowym drugiego stopnia, musimy otrzymać dwa liniowo niezależne rozwiązania.

Funkcja okresowa – funkcja, której wartości „powtarzają się” cyklicznie w stałych odstępach (ścisła definicja poniżej). Klasycznym jej przykładem jest funkcja sinus:Funkcja gamma (zwana też gammą Eulera) – funkcja specjalna, która rozszerza pojęcie silni na zbiór liczb rzeczywistych i zespolonych. Gdy część rzeczywista liczby zespolonej z jest dodatnia, to całka (całka Eulera):

Historia[ | edytuj kod]

Szczególne przypadki funkcji, określanych dziś jako funkcje Bessela, pojawiały się już od pierwszej połowy XVIII w. w rozwiązaniach równań różniczkowych, dokonywanych podczas prób matematycznego opisu różnych problemów fizycznych.

Funkcja τ – funkcja w teorii liczb równa funkcji σ stopnia zerowego. Wartość tej funkcji oznacza liczbę podzielników argumentuFunkcja „na” a. surjekcja pisane też czasami jako suriekcja – funkcja przyjmująca jako swoje wartości wszystkie elementy przeciwdziedziny, tj. której obraz jest równy przeciwdziedzinie.

W 1732 r. szwajcarski matematyk Daniel Bernoulli, badając problem drgań zwisającego ważkiego i giętkiego łańcucha o swobodnym dolnym końcu, otrzymał równanie różniczkowe analogicznego typu, jak podano wyżej. Inny matematyk szwajcarski, Leonard Euler, badał w 1764 r. drgania napiętej przepony kołowej i uzyskał równanie różniczkowe takiej samej postaci, jak równanie, które nazywamy dziś uogólnionym równaniem Bessela. W 1781 r. badał on również wspomniane wyżej zagadnienie Bernoulliego i obliczył niektóre z początkowych zer pierwszego rozwiązania równania. Z kolei francuski matematyk Joseph Louis Lagrange przy rozwiązywaniu w roku 1770 pewnego problemu astronomicznego doszedł do równania, którego rozwiązanie przedstawione w postaci szeregu nieskończonego zawiera współczynniki, łączone obecnie z dziełem Bessela. Współczynnikami tymi zajmowali się następnie inni matematycy: Francesco Carlini i Pierre Simon de Laplace.

Library of Congress Control Number (LCCN) – numer nadawany elementom skatalogowanym przez Bibliotekę Kongresu wykorzystywany przez amerykańskie biblioteki do wyszukiwania rekordów bibliograficznych w bazach danych i zamawiania kart katalogowych w Bibliotece Kongresu lub u innych komercyjnych dostawców. Teoria liczb - dziedzina matematyki, zajmująca się badaniem własności liczb – początkowo tylko naturalnych, i do dziś dla wielu specjalistów są one szczególnie atrakcyjne.

W 1822 r. ukazało się dzieło słynnego matematyka francuskiego J.B. Fouriera pt. Analityczna teoria ciepła. Zajmując się problemem rozkładu temperatury w walcu ogrzanym do pewnej temperatury, a następnie poddanym chłodzeniu w określonych warunkach, Fourier otrzymał szczególny przypadek równania Bessela, dla którego podał rozwiązanie dla rzędu zero. Analizą rozkładów temperatur w kulach i walcach i funkcjami typu funkcji Bessela zajmował się później także inny Francuz, Siméon Denis Poisson. Wszyscy przywołani wyżej uczeni badali więc różne przypadki szczególne pewnego równania różniczkowego, jednak żaden z nich nie podjął próby rozwiązania go w sposób systematyczny.

Pole elektromagnetyczne – pole fizyczne, stan przestrzeni, w której na obiekt fizyczny mający ładunek elektryczny działają siły o naturze elektromagnetycznej. Pole elektromagnetyczne jest układem dwóch pól: pola elektrycznego i pola magnetycznego. Pola te są wzajemnie związane, a postrzeganie ich zależy też od obserwatora, wzajemną relację pól opisują równania Maxwella. Własności pola elektromagnetycznego, jego oddziaływanie z materią bada dział fizyki zwany elektrodynamiką. W mechanice kwantowej pole elektromagnetyczne jest postrzegane jako wirtualne fotony.Siméon Denis Poisson (ur. 21 czerwca 1781 w Pithiviers – zm. 25 kwietnia 1840 r. w Paryżu), francuski mechanik teoretyk, fizyk i matematyk. Zajmował się elektrycznością, magnetyzmem, grawitacją, balistyką, astronomią i mechaniką. W matematyce zajmował się całkami oznaczonymi, równaniami różnicowymi i różniczkowymi oraz teorią prawdopodobieństwa.

W 1824 r. Friedrich Wilhelm Bessel badał eliptyczne ruchy planet. Doszedł do wniosku, że wielkość astronomiczną, zwaną anomalią mimośrodową, można przedstawić za pomocą pewnego szeregu nieskończonego, który można przekształcić do postaci, zwanej obecnie funkcją Bessela. Wyniki swych prac wydał Bessel drukiem w 1826 r., jednak samo pojęcie „funkcji Bessela” upowszechniło się dopiero z górą 30 lat później, po publikacji pracy Oskara Schlömilcha pt. Über die Besselsche Funktion.

Badanie przebiegu zmienności funkcji – zadanie matematyczne polegające na wyznaczeniu pewnych własności danej wzorem funkcji rzeczywistej jednej zmiennej rzeczywistej, które można wywnioskować z niej samej oraz z jej pierwszej i drugiej pochodnej. Własności te pozwalają skonstruować jej przybliżony wykres. Schemat rozwiązywania można przestawić następująco:Daniel Bernoulli (ur. 8 lutego 1700 w Groningen, zm. 17 marca 1782 w Bazylei) – szwajcarski matematyk i fizyk, członek zagraniczny Akademii Stanisława w Nancy od 1755 roku.


Podstrony: 1 [2] [3] [4]




Warto wiedzieć że... beta

Joseph Louis Lagrange, wł. Giuseppe Lodovico (Luigi) Lagrangia (ur. 25 stycznia 1736 w Turynie, zm. 10 kwietnia 1813 w Paryżu) – matematyk i astronom pochodzenia włoskiego, pracujący we Francji i przez dwadzieścia lat w Berlinie dla króla pruskiego Fryderyka II.
Funkcja ciągła – funkcja o następującej intuicyjnej własności: „mała” zmiana argumentu niesie ze sobą „małą” zmianę wartości; lub też: wartości funkcji dla „bliskich” sobie argumentów również będą sobie „bliskie”.
Biblioteka Narodowa Francji (fr. Bibliothèque nationale de France, BnF) – francuska biblioteka narodowa, znajdująca się w Paryżu. Przewidziana jest jako repozytorium dla wszystkich materiałów bibliotecznych, wydawanych we Francji. Obecnym dyrektorem Biblioteki jest Bruno Racine.
Funkcja (łac. functio, -onis, „odbywanie, wykonywanie, czynność”) – dla danych dwóch zbiorów X i Y przyporządkowanie każdemu elementowi zbioru X dokładnie jednego elementu zbioru Y. Oznacza się ją na ogół f, g, h itd.
Warunek Höldera – warunek dotyczący funkcji pojawiający się w założeniach wielu twierdzeń z zakresu analizy matematycznej, jedno z kryteriów jednostajnej ciągłości funkcji.
Przetwarzanie sygnałów zajmuje się wykonywaniem pewnych operacji na sygnałach oraz interpretacją tychże sygnałów.
Funkcja wzajemnie jednoznaczna (bijekcja) – funkcja będąca jednocześnie funkcją różnowartościową i "na". Innymi słowy, bijekcja to funkcja (relacja) taka, że każdemu elementowi obrazu odpowiada dokładnie jeden element dziedziny.

Reklama