• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Funkcja signum



    Podstrony: 1 [2] [3]
    Przeczytaj także...
    Wartość bezwzględna a. moduł – dla danej liczby rzeczywistej wartość liczbowa nieuwzględniająca znaku liczby. Przykładowo Parser nie mógł rozpoznać (Nie można zapisać obrazu z wzorem w systemie plików.): 5Permutacja – wzajemnie jednoznaczne przekształcenie pewnego zbioru na siebie. Najczęściej termin ten oznacza funkcję na zbiorach skończonych.
    Wykres funkcji signum.

    Signum, sgn (łac. signum „znak”) – funkcja zmiennej rzeczywistej, zdefiniowana następująco:

    Własności[ | edytuj kod]

  • Signum iloczynu jest iloczynem signum:
  • Signum jest funkcją nieparzystą.
  • Dla dowolnej liczby rzeczywistej spełniona jest zależność:
  • Argument liczby zespolonej – miara kąta skierowanego między wektorem reprezentującym liczbę zespoloną z {displaystyle z} na płaszczyźnie zespolonej, a osią rzeczywistą. Oznaczenie: arg ⁡ ( z ) {displaystyle arg(z)} .Funkcja (łac. functio, -onis, „odbywanie, wykonywanie, czynność”) – dla danych dwóch zbiorów X i Y przyporządkowanie każdemu elementowi zbioru X dokładnie jednego elementu zbioru Y. Oznacza się ją na ogół f, g, h itd.


    Podstrony: 1 [2] [3]




    Warto wiedzieć że... beta

    Zbiór liczb rzeczywistych – uzupełnienie zbioru liczb wymiernych. Zbiór liczb rzeczywistych zawiera m.in. liczby naturalne, ujemne, całkowite, pierwiastki liczb dodatnich, wymierne, niewymierne, przestępne, itd. Z drugiej strony na liczby rzeczywiste można też patrzeć jak na szczególne przypadki liczb zespolonych.
    Znak liczby – właściwość liczby rzeczywistej określająca jej relację względem liczby 0. Liczba może mieć jeden z trzech znaków:

    Reklama

    Czas generowania strony: 0.812 sek.