• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Funkcja falowa



    Podstrony: [1] 2 [3] [4]
    Przeczytaj także...
    Wartość bezwzględna a. moduł – dla danej liczby rzeczywistej wartość liczbowa nieuwzględniająca znaku liczby. Przykładowo Parser nie mógł rozpoznać (Nie można zapisać obrazu z wzorem w systemie plików.): 5Równanie Pauliego – zaproponowane przez Wolfganga Pauliego uogólnienie równania Schrödingera na przypadek cząstki o spinie 1/2. Polega na dodaniu do hamiltonianu dodatkowej energii potencjalnej oddziaływania magnetycznego spinowego momentu dipolowego z polem magnetycznym:
    Wektor stanu w przestrzeni Hilberta[ | edytuj kod]

    Bardziej abstrakcyjny sens matematyczny funkcji falowej wymaga odwołania się do przestrzeni Hilberta.

    Przestrzeń Hilberta jest przestrzenią wektorową określoną nad ciałem liczb zespolonych, z iloczynem skalarnym zdefiniowanym jako iloczyn wektora z jego sprzężeniem zespolonym; w notacji Diraca iloczyn ten ma postać

    gdzie – wektor (tzw. ket), – sprzężenie zespolone wektora (tzw. bra); iloczyn skalarny – to bra-ket, czyli z j. angielskiego nawias; w ten sposób notacja Diraca jest łatwa do zapamiętania.

    Efekt Aharonova-Bohma (lub Efekt Ehrenberga-Sidaya-Aharonova-Bohma) to zjawisko kwantowo-mechaniczne, w którym naładowana cząstka odczuwa obecność pola elektromagnetycznego w obszarach, gdzie cząstki nie ma. Taki efekt pokazuje, że znajomość lokalnych pól nie wystarcza, by przewidzieć ewolucję układu kwantowego.Operator jest to inna nazwa odwzorowania liniowego zdefiniowanego na przestrzeni Hilberta. Operatory samosprzężone odpowiadają wartościom fizycznym, które mogą być mierzone.

    Wymiar przestrzeni Hilberta zależy od rodzaju układu kwantowego. Stan układu fizycznego określony jest za pomocą wektora w tej przestrzeni.

    Bazę przestrzeni Hilberta można wybrać na wiele sposobów. Jedną z możliwych baz stanowi baza położeniowa, określająca możliwe położenia układu w przestrzeni konfiguracyjnej. Inną bazą jest baza określająca możliwe pędy układu.

    Wektor w przestrzeni Hilberta – reprezentujący stan układu kwantowego – można przedstawić jako kombinacje liniową wektorów bazowych, wprowadzając tym samym współrzędne wektora. Transformacje pomiędzy różnymi bazami odpowiadają zmianie reprezentacji, jak np. zmianie reprezentacji położeniowej na reprezentację pędów. Rozkład wektora w danej bazie pozwala przewidywać wyniki pomiaru odpowiedniej wielkości fizycznej

    Mechanika kwantowa (teoria kwantów) – teoria praw ruchu obiektów świata mikroskopowego. Poszerza zakres mechaniki na odległości czasoprzestrzenne i energie, dla których przewidywania mechaniki klasycznej nie sprawdzały się. Opisuje przede wszystkim obiekty o bardzo małych masach i rozmiarach - np. atom, cząstki elementarne itp. Jej granicą dla średnich rozmiarów lub średnich energii czy pędów jest mechanika klasyczna.Przestrzeń Hilberta – w analizie funkcjonalnej rzeczywista lub zespolona przestrzeń unitarna (tj. przestrzeń liniowa nad ciałem liczb rzeczywistych lub zespolonych z abstrakcyjnym iloczynem skalarnym), zupełna ze względu na indukowaną (poprzez normę) z iloczynu skalarnego tej przestrzeni metrykę. Jako unormowana i zupełna, każda przestrzeń Hilberta jest przestrzenią Banacha, a przez to przestrzenią Frécheta, a stąd lokalnie wypukłą przestrzenią liniowo-topologiczną. Przestrzenie te noszą nazwisko Davida Hilberta, który wprowadził je pod koniec XIX wieku; są one podstawowym narzędziem wykorzystywanym w wielu dziedzinach fizyki, m.in. w mechanice kwantowej (np. przestrzeń Foka nad przestrzenią Hilberta).

    Mianowicie, dla operatora pomiaru (tzw. obserwabli) odpowiadającego pomiarowi pewnej wielkości fizycznej na układzie kwantowym (np. położenia lub pędu) szczególną rolę odgrywają unormowane do 1 wektory przestrzeni Hilberta, które są wektorami własnymi operatora pomiaru. Kwadrat modułu rzutu wektora stanu na wektor własny takiego operatora (obliczany przy użyciu zdefiniowanego dla przestrzeni Hilberta iloczynu skalarnego), jest równy prawdopodobieństwu zarejestrowania układu w stanie opisywanym tym wektorem falowym po akcie pomiaru wielkości fizycznej odpowiadającej temu operatorowi.

    Stanford Encyclopedia of Philosophy (SEP) jest ogólnie dostępną encyklopedią internetową filozofii opracowaną przez Stanford University. Każde hasło jest opracowane przez eksperta z danej dziedziny. Są wśród nich profesorzy z 65 ośrodków akademickich z całego świata. Autorzy zgodzili się na publikację on-line, ale zachowali prawa autorskie do poszczególnych artykułów. SEP ma 1260 haseł (stan na 20 stycznia 2011). Mimo, że jest to encyklopedia internetowa, zachowano standardy typowe dla tradycyjnych akademickich opracowań, aby zapewnić jakość publikacji (autorzy-specjaliści, recenzje wewnętrzne).Wektory i wartości własne – wielkości opisujące endomorfizm danej przestrzeni liniowej; wektor własny przekształcenia można rozumieć jako wektor, którego kierunek nie ulega zmianie po przekształceniu go endomorfizmem; wartość własna odpowiadająca temu wektorowi to skala podobieństwa tych wektorów.

    Funkcję falową otrzymujemy w szczególnym przypadku, gdy operatorem pomiaru jest operator położenia, określający położenie układu w przestrzeni: współrzędne wektora stanu wyrażonego w bazie stanów własnych operatora położenia nazywa się wartościami funkcji falowej, obliczonej w odpowiednich położeniach.

    Aby zilustrować powyżej omówiony formalizm rozważmy przypadek, gdy wielkości mierzone są dyskretne. Wtedy wektor stanu zapisuje się następująco (w notacji Diraca)

    Pojęcie liczby kwantowej pojawiło się w fizyce wraz z odkryciem mechaniki kwantowej. Okazało się, że właściwie wszystkie wielkości fizyczne mierzone w mikroświecie atomów i cząsteczek podlegają zjawisku kwantowania, tzn. mogą przyjmować tylko pewne ściśle określone wartości. Na przykład elektrony w atomie znajdują się na ściśle określonych orbitach i mogą znajdować się tylko tam, z dokładnością określoną przez zasadę nieoznaczoności. Z drugiej strony każdej orbicie odpowiada pewna energia. Bliższe badania pokazały, że w podobny sposób zachowują się także inne wielkości np. pęd, moment pędu czy moment magnetyczny (kwantowaniu podlega tu nie tylko wartość, ale i położenie wektora w przestrzeni albo jego rzutu na wybraną oś). Wobec takiego stanu rzeczy naturalnym pomysłem było po prostu ponumerowanie wszystkich możliwych wartości np. energii czy momentu pędu. Te numery to właśnie liczby kwantowe.Operator Hamiltona (hamiltonian, operator energii) – w mechanice kwantowej odpowiednik funkcji Hamiltona zwanej hamiltonianem. Jest to operator działający nad przestrzenią funkcji falowych stanów układu fizycznego (lub nad przestrzenią Hilberta wektorów stanu). Wartością własną operatora Hamiltona jest energia cząstki opisywanej daną funkcją własną, natomiast wartością średnią operatora Hamiltona jest energia cząstki w danym stanie kwantowym. Matematycznie, operator Hamiltona jest obserwablą, a więc jest operatorem samosprzężonym.

    gdzie są wektorami własnymi wybranego operatora pomiaru tj.

    Operator unitarny - w analizie funkcjonalnej, operator normalny którego złożenie z jego operatorem sprzężonym jest identycznością.Przestrzeń konfiguracyjna to formalna, matematyczna przestrzeń będąca zbiorem możliwych stanów danego układu fizycznego. W zależności od rodzaju i liczby wyróżnionych parametrów stanu przestrzenie konfiguracyjne mogą mieć wiele wymiarów. Stany prostych układów dynamicznych opisuje się najczęściej jako zbiory punktów przestrzeni pędów bądź prędkości: np. stan kwantowego gazu elektronowego opisuje się przy użyciu przestrzeni prędkości z wyróżnioną kulą Fermiego zaś dynamikę punktu materialnego w polu sił (np. pole grawitacyjne) zewnętrznych za pomocą przestrzeni pędów.

    zaś są wartościami, jakie można uzyskać. Wielkości określają prawdopodobieństwa otrzymania wartości w pomiarze.

    Spin – moment własny pędu cząstki w układzie, w którym nie wykonuje ruchu postępowego. Własny oznacza tu taki, który nie wynika z ruchu danej cząstki względem innych cząstek, lecz tylko z samej natury tej cząstki. Każdy rodzaj cząstek elementarnych ma odpowiedni dla siebie spin. Cząstki będące konglomeratami cząstek elementarnych (np. jądra atomów) mają również swój spin będący sumą wektorową spinów wchodzących w skład jego cząstek elementarnych.Interpretacja kopenhaska funkcji falowej jest interpretacją probabilistyczną. Mianowicie gęstość prawdopodobieństwa znalezienia cząstki w danym punkcie jest równa kwadratowi modułu funkcji falowej (funkcji falowej pomnożonej przez jej sprzężenie) w tym punkcie.

    Jeżeli operator jest operatorem położenia to zamiast sumy w powyższym wzorze jest całka; wektory własne operatora położenia oznacza się jako wielkościami mierzonymi są położenia wartości funkcji falowej są równe iloczynom skalarnym wektora stanu z wektorem

    Baza – pojęcie będące przeniesieniem oraz rozwinięciem idei układu współrzędnych kartezjańskich w przestrzeniach euklidesowych na abstrakcyjne przestrzenie liniowe.Prawdopodobieństwo – ogólne określenie jednego z wielu pojęć służących modelowaniu doświadczenia losowego poprzez przypisanie poszczególnym zdarzeniom losowym liczb, zwykle z przedziału jednostkowego (w zastosowaniach często wyrażanych procentowo), wskazujących szanse ich zajścia. W rozumieniu potocznym wyraz „prawdopodobieństwo” odnosi się do oczekiwania względem rezultatu zdarzenia, którego wynik nie jest znany (niezależnie od tego, czy jest ono w jakimś sensie zdeterminowane, miało miejsce w przeszłości, czy dopiero się wydarzy); w ogólności należy je rozumieć jako pewną miarę nieprzewidywalności.

    zaś prawdopodobieństwo otrzymania układu w położeniu wynosi

    Zapach – jedna z liczb kwantowych przypisywanych elementarnym fermionom materii - kwarkom i leptonom. Zapach jest zachowywany w oddziaływaniach silnych i elektromagnetycznych, nie jest natomiast zachowany w oddziaływaniach słabych. Oznacza to, że tylko w oddziaływaniach słabych może następować zmiana zapachu kwarków i leptonów.Obserwabla – w mechanice kwantowej wielkości fizyczne są reprezentowane przez operatory hermitowskie zwane obserwablami. Aby dany operator był obserwablą, jego wektory własne muszą tworzyć bazę przestrzeni Hilberta. Wartości własne operatora hermitowskiego są rzeczywiste. Podczas pomiaru danej wielkości fizycznej otrzymuje się jako wynik jedną z wartości własnych obserwabli przyporządkowanej danej wielkości fizycznej.

    Interpretacje znaczenia funkcji falowej[ | edytuj kod]

    Według interpretacji kopenhaskiej funkcja falowa opisuje stan naszej wiedzy o układzie kwantowym i jako taka nie ma charakteru ontologicznego. Inne interpretacje często zakładają realne istnienie funkcji falowej.

    Zobacz też[ | edytuj kod]

    Operatory:

    Stan kwantowy — informacja o układzie kwantowym pozwalająca przewidzieć prawdopodobieństwa wyników wszystkich pomiarów, jakie można na tym układzie wykonać. Stan kwantowy jest jednym z podstawowych pojęć mechaniki kwantowej.Spinor to obiekt geometryczny o specyficznych własnościach transformacyjnych. Spinory transformują się względem reprezentacji spinorowej (ułamkowej) grupy przekształceń.
  • operator (fizyka)
  • operator Hamiltona
  • operator unitarny
  • Równania:

  • równanie de Broglie’a-Bohma
  • równanie Diraca
  • równanie Pauliego
  • równanie Schrödingera


  • Podstrony: [1] 2 [3] [4]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Izospin – kwantowa wielkość fizyczna, transformująca się względem reprezentacji grupy SU(2). Identyczną grupę transformacji ma zwykły spin, stąd wzięła się nazwa tej wielkości. Izospin jest wektorem w pewnej abstrakcyjnej przestrzeni. Tak samo jak w przypadku zwykłego spinu, nie jest możliwe jednoczesne zmierzenie więcej niż jednej składowej izospinu, podaje się więc tylko jego trzecią składową. Izospin zwykle oznacza się literą T {displaystyle T} , a jego trzecią składową - T 3 {displaystyle T_{3}} .
    International Standard Serial Number, ISSN czyli Międzynarodowy Znormalizowany Numer Wydawnictwa Ciągłego – ośmiocyfrowy niepowtarzalny identyfikator wydawnictw ciągłych tradycyjnych oraz elektronicznych. Jest on oparty na podobnej koncepcji jak identyfikator ISBN dla książek, ISAN dla materiałów audio-wideo. Niektóre publikacje wydawane w seriach mają przyporządkowany zarówno numer ISSN, jak i ISBN.
    Równanie Schrödingera – jedno z podstawowych równań nierelatywistycznej mechaniki kwantowej (obok równania Heisenberga), sformułowane przez austriackiego fizyka Erwina Schrödingera w 1926 roku. Opisuje ono ewolucję układu kwantowego w czasie. W nierelatywistycznej mechanice kwantowej odgrywa rolę analogiczną do drugiej zasady dynamiki Newtona w mechanice klasycznej.
    Ontologia lub metafizyka (por. metafizyka klasyczna) – podstawowy (obok epistemologii) dział filozofii starający się badać strukturę rzeczywistości i zajmujący się problematyką związaną z pojęciami bytu, istoty, istnienia i jego sposobów, przedmiotu i jego własności, przyczynowości, czasu, przestrzeni, konieczności i możliwości.
    Równanie Diraca – podstawowe równanie w relatywistycznej mechanice kwantowej, sformułowane przez angielskiego fizyka Paula Diraca w 1928 roku. Spełnia ono taką samą rolę jak równanie Schrödingera w nierelatywistycznej mechanice kwantowej.

    Reklama

    Czas generowania strony: 0.06 sek.