Dzielenie

Z Wikipedii, wolnej encyklopedii
Przejdź do nawigacji Przejdź do wyszukiwania
Dwadzieścia jabłek można wyobrazić sobie jako cztery rzędy po pięć jabłek. Jeśli więc pytamy, ile jabłek znajdzie się po podziale 20 na 4 rzędy, wykonujemy działanie którego wynikiem jest 5.

Dzielenie – operacja matematyczna zdefiniowana w dowolnym ciele jako:

Twierdzenie o dzieleniu z resztą – twierdzenie matematyczne mówiące o możliwości przedstawienia danej liczby całkowitej, dzielnej, w postaci sumy iloczynu ilorazu przez (niezerowy) dzielnik oraz reszty. Innymi słowy twierdzenie mówi, ile razy (iloraz) dana liczba (dzielnik) mieści się w całości w innej (dzielna) oraz jaka część (reszta) tej liczby nie została wydzielona. Stosuje się także skróconą wersję nazwy: twierdzenie o dzieleniu.Arytmetyka (łac. arithmetica, gr. αριθμητική arithmētikē, od αριθμητικός arithmētikos – arytmetyczna, od αριθμειν arithmein – liczyć, od αριθμός arithmós – liczba; spokr. ze staroang. rīm – liczba, i być z gr. αραρισκειν arariskein – pasować) – jedna z najstarszych część matematyki. W powszechnym użyciu słowo to odnosi się do zasad opisujących podstawowe działania na liczbach (arytmetyka elementarna).
  dla

gdzie jest elementem odwrotnym do

Biblioteka Narodowa Izraela (hebr. הספרייה הלאומית; dawniej: Żydowska Biblioteka Narodowa i Uniwersytecka, hebr. בית הספרים הלאומי והאוניברסיטאי) – izraelska biblioteka narodowa w Jerozolimie.Library of Congress Control Number (LCCN) – numer nadawany elementom skatalogowanym przez Bibliotekę Kongresu wykorzystywany przez amerykańskie biblioteki do wyszukiwania rekordów bibliograficznych w bazach danych i zamawiania kart katalogowych w Bibliotece Kongresu lub u innych komercyjnych dostawców.

Ponieważ dzielenie definiujemy jako mnożenie przez odwrotność, nie można dzielić przez 0, gdyż nie istnieje liczba odwrotna do 0, tzn. nie istnieje liczba, która pomnożona przez 0, da element neutralny mnożenia, czyli 1.

W działaniu tym występują dwa operandy nazywające się dzielną i dzielnikiem. Wynik dzielenia nazywany jest ilorazem.

Podstawowe algorytmy dzielenia[ | edytuj kod]

W ciele liczb rzeczywistych[ | edytuj kod]

Gdy mianownik jest równy podstawie systemu pozycyjnego podniesionej do potęgi to wynik dzielenia równy jest licznikowi, w którym przecinek jest przesunięty w lewo o (dla dowolnego systemu pozycyjnego).

Działanie dwuargumentowe a. binarne – w algebrze działanie algebraiczne o argumentowości równej 2, czyli funkcja przypisująca dwóm elementom inny; wszystkie elementy mogą pochodzić z innych zbiorów.Pierścień z dzieleniem – struktura algebraiczna spełniająca wszystkie aksjomaty ciała z wyjątkiem aksjomatu przemienności mnożenia. Każde ciało jest więc pierścieniem z dzieleniem. Mimo że iloczyn w niżej opisanych pierścieniach i algebrach jest łączny, rozważa się także niełączne algebry z dzieleniem, np. algebrę oktonionów.

W ciele (całkowitych reszt modulo liczba pierwsza )[ | edytuj kod]

Znajdujemy najmniejszą liczbę naturalną taką że:

Kontrola autorytatywna – w terminologii bibliotekoznawczej określenie procedur zapewniających utrzymanie w sposób konsekwentny haseł (nazw, ujednoliconych tytułów, tytułów serii i haseł przedmiotowych) w katalogach bibliotecznych przez zastosowanie wykazu autorytatywnego zwanego kartoteką wzorcową.Ciało – struktura formalizująca własności algebraiczne liczb wymiernych, czy liczb rzeczywistych. W trakcie badań nad tymi obiektami rozwinął się aparat matematyczny (tzw. teoria Galois) umożliwiający rozwiązanie takich problemów jak rozwiązalność równań wielomianowych (jednej zmiennej) przez tzw. pierwiastniki (działania obowiązujące w ciałach i wyciąganie pierwiastków), czy wykonalność pewnych konstrukcji klasycznych (konstrukcji geometrycznych, w których dozwolone jest korzystanie z wyidealizowanych cyrkla i linijki). Działem matematyki zajmującym się opisem tych struktur jest teoria ciał.

Wtedy:

Dzielenie ułamków[ | edytuj kod]

Dzielenie ułamków możemy zamienić mnożeniem przez odwrotność drugiej liczby, czyli:

Gemeinsame Normdatei (GND) – kartoteka wzorcowa, stanowiąca element centralnego katalogu Niemieckiej Biblioteki Narodowej (DNB), utrzymywanego wspólnie przez niemieckie i austriackie sieci biblioteczne.Matematyka (z łac. mathematicus, od gr. μαθηματικός mathēmatikós, od μαθηματ-, μαθημα mathēmat-, mathēma, „nauka, lekcja, poznanie”, od μανθάνειν manthánein, „uczyć się, dowiedzieć”; prawd. spokr. z goc. mundon, „baczyć, uważać”) – nauka dostarczająca narzędzi do otrzymywania ścisłych wniosków z przyjętych założeń, zatem dotycząca prawidłowości rozumowania. Ponieważ ścisłe założenia mogą dotyczyć najróżniejszych dziedzin myśli ludzkiej, a muszą być czynione w naukach ścisłych, technice a nawet w naukach humanistycznych, zakres matematyki jest szeroki i stale się powiększa.

Dzielenie pisemne[ | edytuj kod]

Poniżej podany jest przykład dla dwóch liczb naturalnych: i

Dzielenie przez zero − w matematyce dzielenie, w którym dzielnik jest zerem; jako takie nie ma ono sensu, przez co bywa źródłem błędów obliczeniowych, często ukrytych.

Zaczynamy od wypisania dzielnej i dzielnika, narysowania nad nimi oddzielającej kreski.

5 jest większe od 4, więc patrzymy na kolejną cyfrę dzielnej. 5 mieści się w 48 9 razy, i Dopisujemy więc odpowiednio: 9 nad kreską, bo 9 to maksymalna liczbą 5 „mieszcząca” się w 48, -45 pod 48, bo Istotne jest, żeby utrzymać ostatnie cyfry w swoich „kolumnach”. Tzn. jeśli w danym momencie patrzymy na 48, to piszemy te liczby tak, żeby ostatnie cyfry były w tej samej kolumnie, a reszta była równo oddzielona (w tym wypadku 4 pod 4).

Dalej, odejmujemy 45 od 48 pisemnie. Cyfra z kolejnej kolumny „spada” na miejsce za ostatnią cyfrą po odejmowaniu.

Teraz dzielimy liczbę powstałą po odejmowaniu przez 5 – w taki sposób, jak uprzednio 48: piszemy 7 nad ostatnią cyfrą, czyli nad 7 (na niebiesko). Kontynuujemy...

Nie ma już więcej cyfr, które mogłyby „spaść”. Teraz, można od razu powiedzieć, że wynik dzielenia czyli 975 z resztą 4. Ewentualnie

Można kontynuować dzielenie dopisując do dzielnej zera. Dopisanie pierwszego zera do dzielnej oznacza jednak dopisanie przecinka za ostatnią cyfrą, czyli w tym wypadku za 5.

Otrzymujemy wynik równy który jest zgodny z poprzednim uzyskanym wynikiem.

Po wyczerpaniu wszystkich cyfr dzielnej, 0 kończy dzielenie; w przypadku, gdy nie wszystkie cyfry dzielnej zostały „wyczerpane” (nie „spadły”), a „na dole” znajdują się same zera, dopisuje się zera do końca wyniku, tak, aby ostatnia kolumna wyniku zrównała się z ostatnią kolumną dzielnej.

W przypadku, gdy do czynienia mamy z liczbami z rozszerzeniem dziesiętnym (cyfry po przecinku), możemy rozszerzyć ułamek tak, aby po dzielna i dzielnik były liczbami naturalnymi i kontynuować jak wyżej.

W przypadku, gdy jedna liczba jest ujemna, można wyciągnąć minus przed nawias i kontynuować jak wyżej.

Podstrony: 1 [2] [3]




Reklama