Dziedzina (matematyka)

Z Wikipedii, wolnej encyklopedii
Przejdź do nawigacji Przejdź do wyszukiwania

Dziedzina relacji (dwuczłonowej) – zbiór wszystkich poprzedników par należących do danej relacji. W szczególności dziedziną funkcji nazywa się zbiór wszystkich poprzedników par funkcji traktowanej jako relacja, lub – dla funkcji wieloargumentowej – zbiór par, trójek lub ogólnie krotek jej argumentów.

Jednostajna ciągłość jest własnością pewnej klasy funkcji, określonych między przestrzeniami metrycznymi. Jednostajna ciągłość funkcji pociąga ciągłość, ale na ogół nie odwrotnie.Funkcja okresowa – funkcja, której wartości „powtarzają się” cyklicznie w stałych odstępach (ścisła definicja poniżej). Klasycznym jej przykładem jest funkcja sinus:

Przeciwdziedziną relacji (dwuczłonowej) – zbiór wszystkich następników par należących do danej relacji. W szczególności przeciwdziedziną funkcji nazywa się zbiór wartości funkcji dla wszystkich argumentów z jej dziedziny.

Dziedzina naturalna[ | edytuj kod]

Dla funkcji rzeczywistej (lub zespolonej), dla której dziedzina nie została explicite określona, a która to funkcja została zdefiniowana przez pewne wyrażenie (np. algebraiczne) przyjmuje się, że jest nią największy (w sensie inkluzji) podzbiór zbioru liczb rzeczywistych (zespolonych), dla którego wzór funkcji ma sens (dziedzina wyrażenia). Taką dziedzinę nazywa się dziedziną naturalną.

Funkcja gamma (zwana też gammą Eulera) – funkcja specjalna, która rozszerza pojęcie silni na zbiór liczb rzeczywistych i zespolonych. Gdy część rzeczywista liczby zespolonej z jest dodatnia, to całka (całka Eulera):Funkcja τ – funkcja w teorii liczb równa funkcji σ stopnia zerowego. Wartość tej funkcji oznacza liczbę podzielników argumentu

Oznaczenie dziedziny[ | edytuj kod]

Zapis oznacza, że funkcja jest określona na zbiorze

Funkcja „na” a. surjekcja pisane też czasami jako suriekcja – funkcja przyjmująca jako swoje wartości wszystkie elementy przeciwdziedziny, tj. której obraz jest równy przeciwdziedzinie.Teoria liczb - dziedzina matematyki, zajmująca się badaniem własności liczb – początkowo tylko naturalnych, i do dziś dla wielu specjalistów są one szczególnie atrakcyjne.




Warto wiedzieć że... beta

Badanie przebiegu zmienności funkcji – zadanie matematyczne polegające na wyznaczeniu pewnych własności danej wzorem funkcji rzeczywistej jednej zmiennej rzeczywistej, które można wywnioskować z niej samej oraz z jej pierwszej i drugiej pochodnej. Własności te pozwalają skonstruować jej przybliżony wykres. Schemat rozwiązywania można przestawić następująco:
Funkcja ciągła – funkcja o następującej intuicyjnej własności: „mała” zmiana argumentu niesie ze sobą „małą” zmianę wartości; lub też: wartości funkcji dla „bliskich” sobie argumentów również będą sobie „bliskie”.
Zbiór – pojęcie pierwotne teorii zbiorów (znanej szerzej jako teoria mnogości; za jej twórcę uważa się Georga Cantora) leżące u podstaw całej matematyki; intuicyjnie jest to nieuporządkowany zestaw różnych obiektów, czy też kolekcja niepowtarzających się komponentów bez wyróżnionej kolejności.
Funkcja (łac. functio, -onis, „odbywanie, wykonywanie, czynność”) – dla danych dwóch zbiorów X i Y przyporządkowanie każdemu elementowi zbioru X dokładnie jednego elementu zbioru Y. Oznacza się ją na ogół f, g, h itd.
Warunek Höldera – warunek dotyczący funkcji pojawiający się w założeniach wielu twierdzeń z zakresu analizy matematycznej, jedno z kryteriów jednostajnej ciągłości funkcji.
Funkcja wzajemnie jednoznaczna (bijekcja) – funkcja będąca jednocześnie funkcją różnowartościową i "na". Innymi słowy, bijekcja to funkcja (relacja) taka, że każdemu elementowi obrazu odpowiada dokładnie jeden element dziedziny.
Zbiór liczb rzeczywistych – uzupełnienie zbioru liczb wymiernych. Zbiór liczb rzeczywistych zawiera m.in. liczby naturalne, ujemne, całkowite, pierwiastki liczb dodatnich, wymierne, niewymierne, przestępne, itd. Z drugiej strony na liczby rzeczywiste można też patrzeć jak na szczególne przypadki liczb zespolonych.

Reklama