Dychotomia

Z Wikipedii, wolnej encyklopedii
Przejdź do nawigacji Przejdź do wyszukiwania

Dychotomia (gr. dichotomos – przecięty na dwie części) – dwudzielność; podział na dwie części, wzajemnie się wykluczające i uzupełniające do całości.

Przestrzeń Banacha – przestrzeń unormowana X (z normą ||·||), w której metryka wyznaczona przez normę, tj. metryka d dana wzoremZbiór liczb rzeczywistych – uzupełnienie zbioru liczb wymiernych. Zbiór liczb rzeczywistych zawiera m.in. liczby naturalne, ujemne, całkowite, pierwiastki liczb dodatnich, wymierne, niewymierne, przestępne, itd. Z drugiej strony na liczby rzeczywiste można też patrzeć jak na szczególne przypadki liczb zespolonych.

Podział dychotomiczny zbioru X polega na wyróżnieniu w nim dwóch podzbiorów – A i B – które są rozłączne (nie mają wspólnych elementów) i wyczerpują zbiór X (w skład X nie wchodzi nic spoza A i B, każdy element zbioru X należy albo do podzbioru A, albo do B).

Przykłady[ | edytuj kod]

Szereg twierdzeń w matematyce jest formułowanych w postaci dychotomii – stwierdzenia, że jedna (i tylko jedna) z dwóch własności przysługuje rozważanym obiektom. Na przykład, każda liczba naturalna jest albo parzysta, albo nieparzysta; każde trzy punkty albo leżą na jednej prostej, albo są wierzchołkami trójkąta o dodatnim polu.

Zbiór przeliczalny – intuicyjnie, zbiór którego elementy można ustawić w ciąg (skończony bądź nie), tzn. "wypisać je po kolei", "ponumerować". Istnieją dwie nierównoważne konwencje użycia terminu zbiór przeliczalny w matematyce:Homeomorfizm – jedno z fundamentalnych pojęć topologii. Intuicyjnie - przekształcenie, które dowolnie ściska, rozciąga, wygina lub skręca figurę, nie robi jednak w niej dziur, nie rozrywa jej ani nie skleja jej fragmentów. Inaczej mówiąc, przekształcenie to na ogół zmienia pierwotny kształt i rozmiar figury, zawsze jednak zachowuje potocznie rozumianą ciągłość i spoistość.

Twierdzenia tego typu wzbudzają dodatkowe zainteresowanie, jeśli jeden z warunków mówi, że badany obiekt jest pod pewnym względem bardzo „prosty”, a drugi postuluje, że obiekt ten jest bardzo „złożony”. Na przykład:

  • jeśli B jest nieskończenie wymiarową przestrzenią Banacha, to B zawiera podprzestrzeń z bazą bezwarunkową albo B ma podprzestrzeń dziedzicznie nierozkładalną,
  • każdy analityczny podzbiór prostej rzeczywistej jest albo przeliczalny, albo zawiera homeomorficzną kopię zbioru Cantora
  • jeśli jest pojęciem forsingu, które jest Suslin-ccc, to albo nie dodaje liczby nieograniczonej, albo dodaje liczbę Cohena.
  • Przypisy[ | edytuj kod]

    1. W. T. Gowers. A new dichotomy for Banach spaces. „Geom. Funct. Anal.”. 6, s. 1083--1093, 1996. 
    2. Saharon Szelach. How special are Cohen and random forcings i.e. Boolean algebras of the family of subsets of reals modulo meagre or null. „Israel Journal of Mathematics”. 88, s. 159–174, 1994. 




    Reklama