Droga (topologia)

Z Wikipedii, wolnej encyklopedii
Przejdź do nawigacji Przejdź do wyszukiwania

Drogaciągłe przekształcenie z przedziału jednostkowego w przestrzeń topologiczną. Pętlą nazywa się drogę, której początek i koniec pokrywają się. Ich parametr, szczególnie przy homotopiach, nazywa się niekiedy czasem.

Łączność – jedna z własności działań dwuargumentowych, czyli np. operatorów arytmetycznych. Pojęcie to występuje w dwóch znaczeniach.Grupa – jedna ze struktur algebraicznych: zbiór niepusty, na którym określono pewne łączne działanie dwuargumentowe wewnętrzne, dla którego istnieje element odwrotny do każdego elementu oraz element neutralny. Można powiedzieć, że grupą jest monoid, w którym każdy element ma element odwrotny. Dział matematyki badający własności grup nazywa się teorią grup.

Definicja[ | edytuj kod]

Niech oraz niech będzie przestrzenią topologiczną. Drogą nazywamy ciągłe przekształcenie

Relacja równoważności – zwrotna, symetryczna i przechodnia relacja dwuargumentowa określona na pewnym zbiorze utożsamiająca ze sobą w pewien sposób jego elementy, co ustanawia podział tego zbioru na rozłączne podzbiory według tej relacji. Podobnie każdy podział zbioru niesie ze sobą informację o pewnej relacji równoważności.Przedział jednostkowy – przedział [ 0 , 1 ] {displaystyle [0,1]} liczb rzeczywistych. We wszystkich swych potencjalnych znaczeniach jest on prawie zawsze oznaczany literą I {displaystyle I} . Odgrywa on fundamentalną rolę w teorii homotopii, gałęzi topologii.

Punktem początkowym drogi jest a końcowym Często mówi się o „drodze z do ”, co oczywiście oznacza, że punkty te są odpowiednio początkowym i końcowym danej drogi.

Funkcja ciągła – funkcja o następującej intuicyjnej własności: „mała” zmiana argumentu niesie ze sobą „małą” zmianę wartości; lub też: wartości funkcji dla „bliskich” sobie argumentów również będą sobie „bliskie”.Grupa podstawowa – rozważana w topologii grupa klas homotopii pętli w przestrzeni topologicznej z wyróżnionym punktem (lub łukowo spójnej), pozwalająca na użycie względnie łatwych metod algebraicznych do dowodzenia skomplikowanych twierdzeń topologicznych.

Pętlą zaczepioną w nazywa się drogę z do Równoważnie można określić ją jako drogę taką, że lub jako ciągłe odwzorowanie okręgu jednostkowego w przestrzeń, czyli Ostatnia równoważność wynika z tego, że może być rozważane jako przestrzeń ilorazowa z utożsamionymi punktami i

Działanie dwuargumentowe a. binarne – w algebrze działanie algebraiczne o argumentowości równej 2, czyli funkcja przypisująca dwóm elementom inny; wszystkie elementy mogą pochodzić z innych zbiorów.Funkcja (łac. functio, -onis, „odbywanie, wykonywanie, czynność”) – dla danych dwóch zbiorów X i Y przyporządkowanie każdemu elementowi zbioru X dokładnie jednego elementu zbioru Y. Oznacza się ją na ogół f, g, h itd.

Zbiór pętli w zaczepionych w nazywamy przestrzenią pętli i oznaczamy symbolem

Teoria homotopii - dział topologii algebraicznej powiązany z teorią homologii. Teoria homotopii zajmuje się badaniem "kształtu" przestrzeni topologicznych, porównując je z dobrze znanymi przestrzeniami typu (wielowymiarowe) kule, torusy. Podstawowym narzędziem tej teorii jest pojęcie homotopii i homotopijnej równoważności odwzorowań ciągłych. Teoria homotopii jest silnym narzędziem współczesnej geometrii różniczkowej. Początków teorii homotopii można doszukiwać się w pracach Henri Poincarégo. Spory wkład w rozwój tej teorii wniósł polski matematyk, Karol Borsuk.Homotopia – ciągłe przejście między dwoma przekształceniami ciągłymi przestrzeni topologicznych, tj. takie, za pomocą którego można w jednostce czasu w wyniku ciągłej deformacji z jednego przekształcenia otrzymać drugie. Działem matematyki w którym się je rozważa jest teoria homotopii, gałąź topologii algebraicznej.

Drogowa spójność[ | edytuj kod]

 Osobny artykuł: przestrzeń spójna.

Przestrzeń topologiczną, w której dla jej dowolnych dwóch punktów istnieje droga je łącząca, nazywa się drogowo spójną. Każda przestrzeń może zostać rozbita na zbiór drogowo spójnych składowych, który oznaczany jest często

Przestrzeń spójna – w topologii przestrzeń topologiczna oddająca intuicję „składania się z jednego kawałka”, tzn. niemożność jej rozłożenia na sumę dwóch niepustych, rozłącznych podzbiorów otwartych. Istnieje silniejsze pojęcie przestrzeni spójnej drogowo, w której dowolne dwa punkty dają się połączyć drogą.Topologia algebraiczna – dział matematyki, który zajmuje się badaniem przestrzeni topologicznych przy użyciu metod o charakterze algebraicznym.


Podstrony: 1 [2] [3] [4]




Warto wiedzieć że... beta

Krzywa – w matematyce jedno z fundamentalnych pojęć takich dziedzin jak geometria, czy geometria różniczkowa; stosowane również w mowie potocznej. Mimo intuicyjnej prostoty okazało się ono być bardzo trudne do ścisłego zdefiniowania. Poprawna definicja powinna obejmować „dowolną linię” (w szczególności na płaszczyźnie lub przestrzeni trójwymiarowej), w tym także linię prostą, która mogłaby się rozgałęziać i przerywać.
Obraz – zbiór wszystkich wartości (należących do przeciwdziedziny) przyjmowanych przez funkcję dla każdego elementu danego podzbioru jej dziedziny. Przeciwobraz – zbiór wszystkich elementów dziedziny, które są odwzorowywane na elementy danego podzbioru przeciwdziedziny.

Reklama