Analiza zespolona

Z Wikipedii, wolnej encyklopedii
Przejdź do nawigacji Przejdź do wyszukiwania
Koncentryczne zmniejszające się pasy otaczają miejsca zerowe, z których wyprowadzony jest kolorowy wiatraczek.
Wykres funkcji w biegunowym układzie współrzędnych. Amplituda jest reprezentowana poprzez odcień, a promień za pomocą jasności i nasycenia.

Analiza zespolona – dziedzina matematyki, w szczególności analizy matematycznej, obejmująca swą tematyką teorię funkcji zespolonych zmiennej zespolonej, w tym rzeczywistej, jednej i wielu zmiennych – w tym bardzo rozbudowane teorie funkcji analitycznych, funkcji eliptycznych czy odwzorowań konforemnych. Ma zastosowania w teorii liczb, teorii fraktali, matematyce stosowanej, teorii przestrzeni Hilberta a także w pewnych dziedzinach fizyki.

Równania Cauchy’ego-Riemanna – w analizie zespolonej, dziale matematyki, dwa równania różniczkowe cząstkowe noszące nazwiska Augustina Cauchy’ego i Bernharda Riemanna będące warunkami koniecznym i dostatecznym na to, aby funkcja różniczkowalna była holomorficzna w zbiorze otwartym.Układ współrzędnych biegunowych (układ współrzędnych polarnych) - układ współrzędnych na płaszczyźnie wyznaczony przez pewien punkt O zwany biegunem oraz półprostą OS o początku w punkcie O zwaną osią biegunową.

W analizie zespolonej kluczową rolę odgrywają pojęcia funkcji analitycznych, holomorficznych i meromorficznych. Dla funkcji zespolonych, podobnie jak dla funkcji rzeczywistych, definiuje się pojęcia granicy funkcji, ciągłości, ciągłości jednostajnej, różniczkowalności, funkcji wykładniczej. Na dziedzinę zespoloną, oprócz funkcji wykładniczej, można uogólnić funkcje trygonometryczne, hiperboliczne czy wielomiany. Nieco odmiennej definicji wymaga na przykład pojęcie logarytmu liczby zespolonej i pierwiastka.

Przestrzeń Hilberta – w analizie funkcjonalnej rzeczywista lub zespolona przestrzeń unitarna (tj. przestrzeń liniowa nad ciałem liczb rzeczywistych lub zespolonych z abstrakcyjnym iloczynem skalarnym), zupełna ze względu na indukowaną (poprzez normę) z iloczynu skalarnego tej przestrzeni metrykę. Jako unormowana i zupełna, każda przestrzeń Hilberta jest przestrzenią Banacha, a przez to przestrzenią Frécheta, a stąd lokalnie wypukłą przestrzenią liniowo-topologiczną. Przestrzenie te noszą nazwisko Davida Hilberta, który wprowadził je pod koniec XIX wieku; są one podstawowym narzędziem wykorzystywanym w wielu dziedzinach fizyki, m.in. w mechanice kwantowej (np. przestrzeń Foka nad przestrzenią Hilberta).Funkcja ciągła – funkcja o następującej intuicyjnej własności: „mała” zmiana argumentu niesie ze sobą „małą” zmianę wartości; lub też: wartości funkcji dla „bliskich” sobie argumentów również będą sobie „bliskie”.

Zdarza się jednak, że wprowadzenie analogicznej definicji pewnego pojęcia dla funkcji zespolonych, jak dla rzeczywistych, niesie ze sobą daleko idące konsekwencje. Na przykład: jeśli jest obszarem oraz funkcja ma w tym obszarze ciągłą pochodną (jest klasy ), to ma w tym obszarze wszystkie pochodne (jest klasy ). Dla funkcji zespolonych łatwiej podać, niż w przypadku funkcji rzeczywistych (piła Weierstrassa), przykład funkcji wszędzie ciągłej i nieróżniczkowalnej w żadnym punkcie: funkcja sprzężenia jest ciągła w każdym punkcie i nieróżniczkowalna w żadnym z nich.

Funkcje hiperboliczne – funkcje zmiennej rzeczywistej lub zespolonej będących sumą, różnicą lub ilorazem funkcji eksponencjalnych określone następująco: Szereg Laurenta funkcji zespolonej f(z) to reprezentacja tej funkcji w postaci szeregu potęgowego, w którym występują również składniki o wykładniku ujemnym. Rozwinięcia tego używa się, gdy funkcji nie można rozwinąć w szereg Taylora. Nazwa szeregu pochodzi od nazwiska Pierre Alphonse Laurenta, który opublikował go w 1843 roku.

Począwszy od schyłku XVIII wieku, aż do początków XX wieku znaczny wpływ na rozwój tej dziedziny wiedzy mieli tacy matematycy jak Leonard Euler, Carl Friedrich Gauss, Bernhard Riemann, Augustin Cauchy (Warunki Cauchy-Riemanna), Karl Weierstrass oraz wielu innych aż do dnia dzisiejszego.

Karl Theodor Wilhelm Weierstraß (ur. 31 października 1815 w Ostenfelde w Westfalii, zm. 19 lutego 1897 w Berlinie) – niemiecki matematyk, zwolennik arytmetyzacji analizy matematycznej, twórca precyzyjnego pojęcia granicy funkcji.Sprzężenie zespolone – jednoargumentowe działanie algebraiczne określone na liczbach zespolonych polegające na zmianie znaku części urojonej danej liczby zespolonej.

Ważnymi pojęciami i twierdzeniami analizy zespolonej są także:

  • Funkcje jedno- i wielokrotne
  • Szereg Laurenta
  • Twierdzenie podstawowe Cauchy'ego
  • Wzór całkowy Cauchy'ego





  • Warto wiedzieć że... beta

    Matematyka stosowana - gałąź matematyki zajmująca się przede wszystkim technikami i ich stosowaniem w innych dziedzinach. Interakcja między zastosowaniami matematyki a rozwojem matematyki czystej powoduje, iż obszar matematyki stosowanej nie jest precyzyjnie zdefiniowany. Zalicza się do niej działania rozwijające aparat matematyczny na potrzeby innych nauk, w szczególności medycyny, biologii, informatyki i techniki. Można wyróżnić w niej działy takie jak:
    Zmienna – symbol, oznaczający wielkość, która może przyjmować rozmaite wartości. Wartości te na ogół należą do pewnego zbioru, który jest określony przez naturę rozważanego problemu. Zbiór ten nazywamy zakresem zmiennej.
    Library of Congress Control Number (LCCN) – numer nadawany elementom skatalogowanym przez Bibliotekę Kongresu wykorzystywany przez amerykańskie biblioteki do wyszukiwania rekordów bibliograficznych w bazach danych i zamawiania kart katalogowych w Bibliotece Kongresu lub u innych komercyjnych dostawców.
    Teoria liczb - dziedzina matematyki, zajmująca się badaniem własności liczb – początkowo tylko naturalnych, i do dziś dla wielu specjalistów są one szczególnie atrakcyjne.
    Granica funkcji – wartość, do której obrazy danej funkcji zbliżają się nieograniczenie dla argumentów dostatecznie bliskich wybranemu punktowi. Funkcjonują dwie równoważne definicje podane przez Augustina Louisa Cauchy’ego oraz Heinricha Eduarda Heinego.
    Funkcje trygonometryczne (etym.) – funkcje matematyczne wyrażające między innymi stosunki między długościami boków trójkąta prostokątnego względem miar jego kątów wewnętrznych.
    Funkcja meromorficzna – funkcja f {displaystyle f} , określona na otwartym podzbiorze D {displaystyle D} płaszczyzny zespolonej, która jest funkcją holomorficzną w zbiorze D ∖ S {displaystyle Dsetminus S} , gdzie S {displaystyle S;} oznacza zbiór punktów izolowanych, z których każdy jest biegunem funkcji f {displaystyle f} .

    Reklama