• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Aksjomaty Zermela-Fraenkla



    Podstrony: 1 [2] [3] [4]
    Przeczytaj także...
    Andrzej Stanisław Mostowski (ur. 1 listopada 1913 we Lwowie, zm. 22 sierpnia 1975 w Vancouver, Kanada) – polski matematyk zajmujący się głównie podstawami matematyki, przedstawiciel warszawskiej szkoły matematycznej.Lemat Kuratowskiego-Zorna – twierdzenie teorii mnogości, nazywane zwyczajowo lematem, dające pewien warunek dostateczny istnienia elementu maksymalnego w danym zbiorze częściowo uporządkowanym; znajduje ono wiele zastosowań w pozostałych działach matematyki, gdzie wykorzystywane jest w dowodach istnienia różnych obiektów (gdy szukany element, którego istnienie jest postulowane, jest maksymalnym w pewnym zbiorze z częściowym porządkiem).

    Aksjomaty Zermela-Fraenkla, aksjomatyka Zermela-Fraenkla – układ aksjomatów teorii mnogości zaproponowany przez Ernsta Zermela w 1904 roku i później uzupełniony przez Abrahama Fraenkla. Tym, co w istocie Fraenkel dodał do teorii Zermela, były funkcje.

    Adolf Abraham Halevi Fraenkel (ur. 17 lutego 1891 r., zm. 15 października 1965 r.), znany jako Abraham Fraenkel, był niemiecko-izraelskim matematykiem.Antynomia Russella lub paradoks Russella – sprzeczność wykryta w naiwnej teorii mnogości przez Bertranda Russella w 1901 roku. Sprzeczność ta stanowiła duży cios dla rozwoju logicyzmu, będącego próbą aksjomatyzacji matematyki, zgodnie z którym wszystkie obiekty matematyczne powinny dać się wyrazić jako zbiory. Obserwacje dokonane przez Russella zmusiły matematyków do rewizji tego fundamentalnego stanowiska i następnie przyjęcia, że istnieją obiekty niebędące zbiorami, opisywane formułami logicznymi – nazywa się je klasami właściwymi. Paradoks ten wynika z autoreferencji, czyli odwoływania się do samego siebie, i ma charakter podobny do takich paradoksów jak paradoks zbioru wszystkich zbiorów, paradoks kłamcy czy paradoks Berry’ego; por. twierdzenia Gödla i problem stopu.

    Dla aksjomatyki Zermela-Fraenkla stosuje się często wygodną symbolikę ZF. Ze względu na specyfikę jednego z jej aksjomatów zwanego aksjomatem wyboru, stosuje się także obok ZF oznaczenie ZFC dla zaznaczenia, że dowód jakiegoś twierdzenia wymaga lub nie wymaga zastosowania aksjomatu wyboru.

    Historia[ | edytuj kod]

    W przeszłości zbiory pojmowano intuicyjnie. Uważano na przykład, że każda właściwość pociąga za sobą istnienie odpowiadającego jej zbioru elementów, którym ta właściwość przysługuje. Takie pojmowanie teorii mnogości prowadziło jednak do sprzeczności, wśród których wymienić można antynomię Russela (mianowicie przyjmując za cechę niebycie własnym elementem otrzymuje się zbiór, który należy do siebie samego wtedy i tylko wtedy, kiedy do siebie nie należy). W toku dyskusji nad rozwijaną teorią matematycy przekonali się, że ich intuicje dotyczące pojęcia zbioru różnią się między sobą. Stało się jasne, że teoria mnogości wymaga oparcia na jakimś systemie aksjomatycznym.

    Aksjomat nieskończoności – jeden z aksjomatów teorii mnogości. Mówi, że istnieje zbiór X {displaystyle X;} spełniający dwa następujące warunki:Kazimierz Kuratowski (ur. 2 lutego 1896 w Warszawie, zm. 18 czerwca 1980 w Warszawie), polski matematyk, jeden z czołowych przedstawicieli warszawskiej szkoły matematycznej.

    Pierwszą próbę skonstruowania takiego systemu podjął Zermelo w 1904. Wprowadził jako pojęcia pierwotne swej teorii zbiór oraz relację bycia elementem Pomysł Zermelo obejmował aksjomaty jednoznaczności, zbioru pustego, sumy zbiorów, zbioru potęgowego, nieskończoności oraz aksjomat o pozdbiorach dla danej formuły. Sformułowanie tego ostatniego zostało w pracy Zermela uznane za niejasne.

    Stanford Encyclopedia of Philosophy (SEP) jest ogólnie dostępną encyklopedią internetową filozofii opracowaną przez Stanford University. Każde hasło jest opracowane przez eksperta z danej dziedziny. Są wśród nich profesorzy z 65 ośrodków akademickich z całego świata. Autorzy zgodzili się na publikację on-line, ale zachowali prawa autorskie do poszczególnych artykułów. SEP ma 1260 haseł (stan na 20 stycznia 2011). Mimo, że jest to encyklopedia internetowa, zachowano standardy typowe dla tradycyjnych akademickich opracowań, aby zapewnić jakość publikacji (autorzy-specjaliści, recenzje wewnętrzne).Zbiór induktywny – rodzina zbiorów x {displaystyle x} spełniająca warunki

    W 1908 roku Ernst Zermelo zaproponował pierwszy zestaw aksjomatów teorii mnogości: teorię mnogości Zermela. Ta aksjomatyczna teoria nie umożliwiała konstrukcji liczb porządkowych. Choć większość „zwykłej matematyki” można wyprowadzić bez ich używania, jednak liczby porządkowe są nieodzowne w większości badań teoriomnogościowych. Ponadto jeden z aksjomatów Zermela odwoływał się do bliżej niewyjaśnionego pojęcia „określonej” właściwości. W 1922 roku Abraham Fraenkel i Thoralf Skolem zaproponowali, niezależnie, uściślenie pojęcia „określoności” właściwości jako takich, które mogą zostać sformułowane w rachunku predykatów z równością, w którym jedynym symbolem spoza logiki jest binarny predykat „należenia do”, oznaczany symbolem (U+2208). Również niezależnie od siebie, zaproponowali oni zastąpienie aksjomatu podzbiorów przez aksjomat zastępowania. Stosując wspomniany schemat oraz dodając do teorii mnogości Zermela aksjomat regularności, zaproponowany przez Zermela w 1930 roku, otrzymuje się teorię ZF.

    Aksjomat ekstensjonalności - jeden z aksjomatów Zermelo-Fraenkela w aksjomatycznej teorii mnogości, sformułowany przez Ernsta Zermelo w 1908. Aksjomat ten postuluje, że dwa zbiory złożone z tych samych elementów są identyczne.Równość – relacja, która jest relacją równoważności. Jest to zatem relacja zwrotna, przechodnia i symetryczna. Ważną cechą relacji równości a = b {displaystyle a=b} jest to, że dla dowolnej funkcji f {displaystyle f} zachodzi:


    Podstrony: 1 [2] [3] [4]




    Warto wiedzieć że... beta

    Albert Thoralf Skolem (ur. 23 maja 1887 w Sandsvaer, zm. 23 marca 1963 w Oslo) – norweski matematyk, znany przede wszystkim ze swych prac w dziedzinie logiki matematycznej i teorii mnogości.
    Teoria mnogości lub inaczej: teoria zbiorów – dział matematyki, a zarazem logiki matematycznej zapoczątkowany przez niemieckiego matematyka Georga Cantora pod koniec XIX wieku. Teoria początkowo wzbudzała wiele kontrowersji, jednak wraz z postępem matematyki zaczęła ona pełnić rolę fundamentu, na którym opiera się większość matematycznych rozważań.
    Aksjomat wyboru (ozn. AC od ang. Axiom of Choice) – jeden z aksjomatów teorii mnogości mówiący o możliwości skonstruowania zbioru (nazywanego selektorem) zawierającego dokładnie po jednym elemencie z każdego zbioru należącego do rodziny niepustych zbiorów rozłącznych.
    Rodzina indeksowana – w matematyce uogólnienie pojęcia rodziny zbiorów analogiczne do uogólnienia zbioru przez ciągi. Rodzinę indeksowaną zbiorów definiuje się określając wpierw ogólniejsze pojęcie rodziny indeksowanej elementów.
    Aksjomat (postulat, pewnik) (gr. αξιωμα [aksíoma] – godność, pewność, oczywistość) – jedno z podstawowych pojęć logiki matematycznej. Od czasów Euklidesa uznawano, że aksjomaty to zdania przyjmowane za prawdziwe, których nie dowodzi się w obrębie danej teorii matematycznej. We współczesnej matematyce definicja aksjomatu jest nieco inna:
    Liczby naturalne – liczby służące podawaniu liczności (trzy osoby, zob. liczebnik główny/kardynalny) i ustalania kolejności (trzecia osoba, zob. liczebnik porządkowy), poddane w matematyce dalszym uogólnieniom (odpowiednio: liczby kardynalne, liczby porządkowe). Badaniem własności liczb naturalnych zajmują się arytmetyka i teoria liczb. Według finitystów, zwolenników skrajnego nurtu filozofii matematyki, są to jedyne liczby, jakimi powinna zajmować się matematyka - słynne jest stwierdzenie propagatora arytmetyzacji wszystkich dziedzin matematyki Leopolda Kroneckera: Liczby całkowite stworzył dobry Bóg. Reszta jest dziełem człowieka.
    Ernst Friedrich Ferdinand Zermelo (ur. 27 lipca 1871 w Berlinie, zm. 21 maja 1953 we Fryburgu Bryzgowijskim) – niemiecki matematyk.

    Reklama

    Czas generowania strony: 1.61 sek.