• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Zbiór skończony



    Podstrony: 1 [2] [3]
    Przeczytaj także...
    Moc zbioru – własność zbioru, która opisuje jego liczebność. Nieformalnie, moc zbioru jest tym większa im większy jest zbiór. Pojęcie mocy zbioru opiera się na pojęciu równoliczności dwóch zbiorów – zbiory A i B są równoliczne, gdy każdy element zbioru A można połączyć w parę z dokładnie jednym elementem zbioru B, innymi słowy istnieje bijekcja (funkcja różnowartościowa i "na") między zbiorami A i B. Zbiory równoliczne mają tę samą moc. Moce zbiorów są konkretnymi obiektami matematycznymi, nazywanymi liczbami kardynalnymi.Atom – podstawowy składnik materii. Składa się z małego dodatnio naładowanego jądra o dużej gęstości i otaczającej go chmury elektronowej o ujemnym ładunku elektrycznym.

    Zbiór skończonyzbiór o skończonej liczbie elementów. Nieujemną liczbę naturalną określającą ilość elementów zbioru skończonego nazywa się mocą zbioru. Zbiór skończony ma moc skończoną. Najmniejszym zbiorem skończonym jest zbiór pusty  Ø.

    Linia prosta lub prosta – jedno z podstawowych pojęć geometrii, szczególny przypadek nieograniczonej z obydwu stron krzywej o nieskończonym promieniu krzywizny w każdym punkcie.Podzbiór – pewna „część” danego zbioru, czyli dla danego zbioru, nazywanego nadzbiorem, zbiór składający się z pewnej liczby jego elementów, np. żadnego, jednego, wszystkich. Pierwszy przypadek nazywa się podzbiorem pustym, drugi – podzbiorem jednoelementowym lub singletonem, trzeci – podzbiorem niewłaściwym.

    Np. zbiór liczb

    jest zbiorem skończonym o pięciu elementach; moc tego zbioru wynosi 5. Zbiór pusty ma moc równą zero.

    Zbiory skończone mogą mieć one bardzo dużo elementów. Np. liczba atomów w widzialnym wszechświecie, tzn. dostępnym w obserwacjach za pomocą najlepszych teleskopów, szacowana jest na ok. 10.

    Aksjomat nieskończoności – jeden z aksjomatów teorii mnogości. Mówi, że istnieje zbiór X {displaystyle X;} spełniający dwa następujące warunki:Kryptologia (z gr. κρυπτός – kryptos – "ukryty" i λόγος – logos – "słowo") – dziedzina wiedzy o przekazywaniu informacji w sposób zabezpieczony przed niepowołanym dostępem. Współcześnie kryptologia jest uznawana za gałąź zarówno matematyki, jak i informatyki; ponadto jest blisko związana z teorią informacji, inżynierią oraz bezpieczeństwem komputerowym.

    Nie zawsze jest łatwo określić liczbę elementów zbiorów skończonych, gdy dana jest jedynie definicja zbioru. Np. na pytanie ile jest (pod)zbiorów k-elementowych zbioru n-elementowego odpowiada działa matematyki zwany kombinatoryką. (W ogólności kombinatoryka zajmuje się badaniem różnych struktur, skończonych lub policzalnych nieskończonych, i odpowiada na pytanie o liczbę elementów zbiorów tych struktur; pośrednio zajmują się nim również teoria liczb oraz kryptografia.)

    Symbol Newtona ( n k ) {displaystyle {n choose k}} (nazywany też współczynnikiem dwumianowym, czytany n nad k, n po k lub k z n) jest to funkcja dwóch argumentów całkowitych nieujemnych, zdefiniowana jako:Niesprzeczna teoria logiczna to taka, która nie zawiera sprzeczności. Brak sprzeczności można zdefiniować semantycznie albo syntaktycznie. Definicja semantyczna postuluje, że teoria jest niesprzeczna, jeśli posiada model. Odpowiada to pojęciu niesprzeczności w tradycyjnej logice Arystotelesa, aczkolwiek w dzisiejszej logice matematycznej używa się w zamian określenia spełnialności. Definicja syntaktyczna mówi, że teoria jest niesprzeczna, jeśli nie ma takiej formuły P, że zarówno P jak i jej zaprzeczenie można wyprowadzić z aksjomatów danej teorii za pomocą powiązanego z nią systemu dedukcji.

    W zbiorze nie jest istotna kolejność elementów, inaczej niż w ciągu skończonym (w tym ostatnim występuje skończona liczba elementów, przy czym ustalona jest ich kolejność).

    Do XIX wieku zgodnie z myślą Arystotelesa matematycy zajmowali się wyłącznie zbiorami skończonymi. Nieskończoność traktowano jako proces, który można w razie potrzeby bez przeszkód kontynuować. Np. w geometrii euklidesowej prostą traktowano jako odcinek, który można nieograniczenie przedłużać.

    Przełom przyniosły prace Georga Cantora, który potraktował zbiory nieskończone jako byty o własnej hierarchii (zob. nieskończoności potencjalną i aktualną). Trudności istniejące w początkowej fazie rozwoju teorii spowodowały opór w postaci finityzmu, konstruktywizmu czy intuicjonizmu; w szczególności odrzucano pojęcie nieskończoności aktualnej (zob. aksjomat Cantora, nazywany też aksjomatem nieskończoności).

    Ciąg – w matematyce pojęcie oddające intuicję ponumerowania, czy też uporządkowania elementów zbioru. W zależności od rodzaju elementów zbioru stosuje się różne nazwy: w przypadku liczb mówi się o ciągach liczbowych, bądź bardziej precyzyjnie, np. w przypadku zbioru liczb całkowitych, rzeczywistych czy zespolonych, ciąg nazywa się wtedy odpowiednio ciągiem całkowitoliczbowym, rzeczywistym i zespolonym. Jeśli elementami zbioru są funkcje, to ciąg nazywa się ciągiem funkcyjnym. Ciąg powstały poprzez wybranie elementów innego ciągu nazywa się podciągiem.Teoria mnogości lub inaczej: teoria zbiorów – dział matematyki, a zarazem logiki matematycznej zapoczątkowany przez niemieckiego matematyka Georga Cantora pod koniec XIX wieku. Teoria początkowo wzbudzała wiele kontrowersji, jednak wraz z postępem matematyki zaczęła ona pełnić rolę fundamentu, na którym opiera się większość matematycznych rozważań.

    We współczesnej matematyce rozpatruje się z powodzeniem zbiory nieskończone, choć pojawiają się tu różne, nieoczekiwane, nieintuicyjne własności (np. paradoks Hilberta), których brak dla zbiorów skończonych.

    Podstrony: 1 [2] [3]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Paradoks Hilberta – paradoks opisany przez Davida Hilberta w celu ilustracji trudności w intuicyjnym rozumieniu pojęcia "ilości" elementów zbioru z nieskończoną liczbą elementów. Paradoks ten znany jest też pod nazwą paradoksu Grand Hotelu lub paradoksu hotelu Hilberta.
    Aksjomat wyboru (ozn. AC od ang. Axiom of Choice) – jeden z aksjomatów teorii mnogości mówiący o możliwości skonstruowania zbioru (nazywanego selektorem) zawierającego dokładnie po jednym elemencie z każdego zbioru należącego do rodziny niepustych zbiorów rozłącznych.
    Alfred Tarski wł. Alfred Tajtelbaum (ur. 14 stycznia 1901 w Warszawie, zm. 26 października 1983 w Berkeley, Kalifornia, USA) – polski logik pracujący od 1939 r. w Stanach Zjednoczonych. Twórca m.in. teorii modeli i semantycznej definicji prawdy, uważany jest współcześnie za jednego z najwybitniejszych logików wszech czasów.
    Twierdzenie Gödla to jeden z najbardziej znanych rezultatów logiki matematycznej. W istocie znane są dwa różne twierdzenia Gödla: pierwsze z nich to twierdzenie o niezupełności, drugie zaś to jego wniosek nazywany też twierdzeniem o niedowodliwości niesprzeczności. Oba twierdzenia zostały udowodnione w 1931 roku przez austriackiego matematyka i logika Kurta Gödla. Uważa się również, że twierdzenia te dają negatywną odpowiedź na drugi problem Hilberta, i w ten sposób mają spore znaczenie w filozofii matematyki. Oprócz rozpatrywanych w tym artykule twierdzeń, Gödel udowodnił też twierdzenie o istnieniu modelu i twierdzenie o nierozstrzygalności (patrz: teoria, struktura matematyczna).
    Liczby naturalne – liczby służące podawaniu liczności (trzy osoby, zob. liczebnik główny/kardynalny) i ustalania kolejności (trzecia osoba, zob. liczebnik porządkowy), poddane w matematyce dalszym uogólnieniom (odpowiednio: liczby kardynalne, liczby porządkowe). Badaniem własności liczb naturalnych zajmują się arytmetyka i teoria liczb. Według finitystów, zwolenników skrajnego nurtu filozofii matematyki, są to jedyne liczby, jakimi powinna zajmować się matematyka - słynne jest stwierdzenie propagatora arytmetyzacji wszystkich dziedzin matematyki Leopolda Kroneckera: Liczby całkowite stworzył dobry Bóg. Reszta jest dziełem człowieka.
    Aksjomaty Zermelo-Fraenkela, w skrócie: aksjomaty ZF – powszechnie przyjmowany system aksjomatów zaproponowany przez Ernsta Zermelo w 1904 roku, który został później uzupełniony przez Abrahama Fraenkela.
    Teoria liczb - dziedzina matematyki, zajmująca się badaniem własności liczb – początkowo tylko naturalnych, i do dziś dla wielu specjalistów są one szczególnie atrakcyjne.

    Reklama

    Czas generowania strony: 0.016 sek.