• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Zbiór przeliczalny

    Przeczytaj także...
    Liczba pierwsza – liczba naturalna większa od 1, która ma dokładnie dwa dzielniki naturalne: jedynkę i siebie samą, np.Podzbiór – pewna „część” danego zbioru, czyli dla danego zbioru, nazywanego nadzbiorem, zbiór składający się z pewnej liczby jego elementów, np. żadnego, jednego, wszystkich. Pierwszy przypadek nazywa się podzbiorem pustym, drugi – podzbiorem jednoelementowym lub singletonem, trzeci – podzbiorem niewłaściwym.
    Definicja intuicyjna: Ułamki liczb całkowitych o niezerowym mianowniku; liczby rzeczywiste mające skończone, bądź okresowe od pewnego miejsca rozwinięcie dziesiętne.

    Zbiór przeliczalny – zbiór, którego elementy można ustawić w ciąg (skończony bądź nie), tzn. "wypisać je po kolei", "ponumerować". Istnieją dwie nierównoważne konwencje użycia terminu zbiór przeliczalny w matematyce:

  • zbiór przeliczalny to zbiór skończony lub zbiór równoliczny ze zbiorem liczb naturalnych (tzn. taki zbiór, że istnieje funkcja wzajemnie jednoznaczna między nim a zbiorem liczb naturalnych. Zbiór równoliczny ze zbiorem liczb naturalnych jest zbiorem nieskończonym).
  • zbiór przeliczalny to zbiór równoliczny ze zbiorem liczb naturalnych (definicja ta wyklucza możliwość bycia zbiorem skończonym ponieważ nie istnieje funkcja różnowartościowa określona w zbiorze liczb naturalnych o wartościach w zbiorze skończonym). W przypadku tej konwencji zbiory przeliczalne według pierwszej definicji nazywa się zbiorami co najwyżej przeliczalnymi.
  • Liczbę kardynalną zbioru liczb naturalnych – a więc i każdego nieskończonego zbioru przeliczalnego – oznacza się symbolem (czyt.: alef zero). Niektórzy matematycy oznaczają tę liczbę kardynalną symbolem (ponieważ formalnie jest najmniejszą nieskończoną liczbą porządkową).

    Liczby całkowite – liczby naturalne dodatnie N + = { 1 , 2 , 3 , … } {displaystyle mathbb {N} _{+}={1,2,3,dots }} oraz liczby przeciwne do nich { − 1 , − 2 , − 3 , … } {displaystyle {-1,-2,-3,dots }} , a także liczba zero. Uogólnieniem liczb całkowitych są liczby wymierne i tym samym liczby rzeczywiste, szczególnym przypadkiem liczb całkowitych są: liczby naturalne.Paradoks Hilberta – paradoks opisany przez Davida Hilberta w celu ilustracji trudności w intuicyjnym rozumieniu pojęcia "ilości" elementów zbioru z nieskończoną liczbą elementów. Paradoks ten znany jest też pod nazwą paradoksu Grand Hotelu lub paradoksu hotelu Hilberta.

    Własności[]

    Poniższe własności są prawdziwe dla zbiorów przeliczalnych w sensie obu powyższych definicji:

  • Nieskończony podzbiór zbioru przeliczalnego jest przeliczalny.
  • Suma przeliczalnie wielu zbiorów przeliczalnych jest zbiorem przeliczalnym.
  • Iloczyn kartezjański skończonej liczby zbiorów przeliczalnych jest zbiorem przeliczalnym.
  • Przykłady[]

    Zbiór liczb wymiernych jest równoliczny ze zbiorem liczb naturalnych
  • Zbiór wszystkich liczb naturalnych nieparzystych jest zbiorem przeliczalnym ponieważ funkcja f(n) = 2n + 1 ustala równoliczność zbioru liczb naturalnych ze zbiorem liczb nieparzystych.
  • Zbiór wszystkich liczb pierwszych jest (nieskończonym) zbiorem przeliczalnym, jako nieskończony podzbiór zbioru liczb naturalnych.
  • Zbiór wszystkich liczb całkowitych jest przeliczalny. Można bowiem liczby całkowite ustawić w ciąg, na przykład w ten sposób: 0, 1, -1, 2, -2, 3, -3, 4, -4, 5, -5, ...
  • Zbiór wszystkich liczb wymiernych jest przeliczalny. Aby to udowodnić wystarczy wszystkie liczby wymierne wpisać do następującej tablicy: w wierszu pierwszym wpiszemy liczby 1/1, -1/1, 1/2, -1/2 ,1/3, -1/3... w wierszu drugim 2/1, -2/1, 2/2, -2/2, 2/3, -2/3... itd.; ogólnie, w wierszu n-tym wpisujemy liczby postaci n/i, -n/i gdzie i=1,2,3,... W ten sposób w tablicy znajdą się wszystkie liczby wymierne. Aby teraz z takiej dwuwymiarowej tabeli wybrać ciąg zawierający kolejno wszystkie jej elementy, wystarczy wybierać liczby według reguły "po skosie" zaczynając od lewego górnego rogu i poruszając się raz w dół, raz do góry. Otrzymujemy tym samym uporządkowanie wszystkich liczb wymiernych w ciąg – co więcej, każda liczba wymierna pojawi się w tym ciągu nieskończenie wiele razy.
  • Zbiór liczb algebraicznych jest przeliczalny.
  • Zbiór liczb rzeczywistych nie jest zbiorem przeliczalnym (jest to przykład zbioru nieprzeliczalnego) - zob.: rozumowanie przekątniowe.
  • Bibliografia[]

  • Helena Rasiowa: Wstęp do matematyki współczesnej. Wyd. dwunaste. Warszawa: PWN, 1998, s. 95-99. ISBN 83-01-01373-7.
  • Zobacz też[]

  • paradoks Hilberta
  • Liczby naturalne – liczby służące podawaniu liczności (trzy osoby, zob. liczebnik główny/kardynalny) i ustalania kolejności (trzecia osoba, zob. liczebnik porządkowy), poddane w matematyce dalszym uogólnieniom (odpowiednio: liczby kardynalne, liczby porządkowe). Badaniem własności liczb naturalnych zajmują się arytmetyka i teoria liczb. Według finitystów, zwolenników skrajnego nurtu filozofii matematyki, są to jedyne liczby, jakimi powinna zajmować się matematyka - słynne jest stwierdzenie propagatora arytmetyzacji wszystkich dziedzin matematyki Leopolda Kroneckera: Liczby całkowite stworzył dobry Bóg. Reszta jest dziełem człowieka.Alef – pierwsza litera alfabetów semickich, m.in. fenickiego, aramejskiego, arabskiego, hebrajskiego, syryjskiego, odpowiadająca liczbie 1.



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Liczba algebraiczna to liczba rzeczywista (ogólniej zespolona), która jest pierwiastkiem pewnego niezerowego wielomianu o współczynnikach wymiernych (a więc i całkowitych).
    Zbiór skończony − zbiór o skończonej liczbie elementów. Nieujemną liczbę naturalną określającą ilość elementów zbioru skończonego nazywa się mocą zbioru. Zbiór skończony ma moc skończoną. Najmniejszym zbiorem skończonym jest zbiór pusty  Ø.
    Zbiór nieprzeliczalny – zbiór, który nie jest przeliczalny. Inaczej: zbiór nieskończony, który nie jest równoliczny ze zbiorem liczb naturalnych (zatem ma większą moc). Pojęcie zbioru nieprzeliczalnego pochodzi od Georga Cantora.
    Moc zbioru – własność zbioru, która opisuje jego liczebność. Nieformalnie, moc zbioru jest tym większa im większy jest zbiór. Pojęcie mocy zbioru opiera się na pojęciu równoliczności dwóch zbiorów – zbiory A i B są równoliczne, gdy każdy element zbioru A można połączyć w parę z dokładnie jednym elementem zbioru B, innymi słowy istnieje bijekcja (funkcja różnowartościowa i "na") między zbiorami A i B. Zbiory równoliczne mają tę samą moc. Moce zbiorów są konkretnymi obiektami matematycznymi, nazywanymi liczbami kardynalnymi.
    Funkcja wzajemnie jednoznaczna (bijekcja) – funkcja będąca jednocześnie funkcją różnowartościową i "na". Innymi słowy, bijekcja to funkcja (relacja) taka, że każdemu elementowi obrazu odpowiada dokładnie jeden element dziedziny.
    Zbiór liczb rzeczywistych – uzupełnienie zbioru liczb wymiernych. Zbiór liczb rzeczywistych zawiera m.in. liczby naturalne, ujemne, całkowite, pierwiastki liczb dodatnich, wymierne, niewymierne, przestępne, itd. Z drugiej strony na liczby rzeczywiste można też patrzeć jak na szczególne przypadki liczb zespolonych.
    Liczby porządkowe (liczba porządkowa, lp.) – w teorii mnogości specjalne rodzaje zbiorów dobrze uporządkowanych, które są kanonicznymi reprezentantami klas izomorficzności dobrych porządków.

    Reklama

    Czas generowania strony: 0.036 sek.