• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Zbiór



    Podstrony: 1 [2] [3] [4]
    Przeczytaj także...
    Moc zbioru – własność zbioru, która opisuje jego liczebność. Nieformalnie, moc zbioru jest tym większa im większy jest zbiór. Pojęcie mocy zbioru opiera się na pojęciu równoliczności dwóch zbiorów – zbiory A i B są równoliczne, gdy każdy element zbioru A można połączyć w parę z dokładnie jednym elementem zbioru B, innymi słowy istnieje bijekcja (funkcja różnowartościowa i "na") między zbiorami A i B. Zbiory równoliczne mają tę samą moc. Moce zbiorów są konkretnymi obiektami matematycznymi, nazywanymi liczbami kardynalnymi.Kwantyfikator egzystencjalny (mały kwantyfikator, kwantyfikator szczegółowy) to kwantyfikator mówiący, że istnieje takie podstawienie zmiennej, że dane twierdzenie zachodzi.

    Zbiór (dawniej także mnogość) – pojęcie pierwotne aksjomatycznej teorii mnogości leżące u podstaw całej matematyki; intuicyjnie jest to nieuporządkowany zestaw różnych obiektów, czy też kolekcja niepowtarzających się komponentów bez wyróżnionej kolejności.

    Liczba pierwsza – liczba naturalna większa od 1, która ma dokładnie dwa dzielniki naturalne: jedynkę i siebie samą, np.Zbiór rozmyty (ang. fuzzy set) – obiekt matematyczny ze zdefiniowaną funkcją przynależności (zwaną też funkcją charakterystyczną zbioru rozmytego), która przybiera wartości z przedziału [0, 1]. Teoria zbiorów rozmytych została wprowadzona przez Lotfi A. Zadeha w 1965 r. jako rozszerzenie klasycznej teorii zbiorów.

    Spis treści

  • 1 Wprowadzenie
  • 2 Określanie
  • 3 Działania
  • 4 Uogólnienia
  • 5 Zobacz też
  • 6 Uwagi
  • 7 Przypisy
  • Wprowadzenie[edytuj kod]

    Każdy zbiór jest jednoznacznie wyznaczony przez jego składowe nazywane jego elementami (tzn. istnieje tylko jeden zbiór złożony z zadanych elementów), przy czym każdy element może należeć do danego zbioru bądź nie (tzn. element nie może należeć do zbioru np. „dwukrotnie”). Pojęcie zbioru ma charakter dystrybutywny, a nie kolektywny: Mars jest elementem zbioru planet Układu Słonecznego, lecz jakikolwiek element tej planety, np. leżąca na niej skała, nie jest już elementem wspomnianego zbioru planet (dystrybutywność); nadwozie jest elementem zbioru części samochodu, przy czym wycieraczka jest elementem nadwozia, a więc jest elementem samochodu (kolektywność).

    Łączność – jedna z własności działań dwuargumentowych, czyli np. operatorów arytmetycznych. Pojęcie to występuje w dwóch znaczeniach.Pierścień zbiorów – niepusta rodzina zbiorów zamknięta ze względu na przecięcia i różnicę symetryczną, tzn. jeżeli dla dowolnego A , B ∈ R {displaystyle A,Bin {mathcal {R}}} zachodzi

    W tzw. naiwnej (tj. niezaksjomatyzowanej) teorii mnogości zbiory wprowadza się wraz z relacją należenia lub przynależności do zbioru oznaczaną zmodyfikowaną małą literą alfabetu greckiego (dla odróżnienia w matematyce korzysta się z innego jej wariantu typograficznego, ); przykładowo należenie elementu do zbioru zapisuje się zwykle zaś zaprzeczenie tego zdania („element nie należy do zbioru ”) uzyskuje się poprzez przekreślenie znaku relacji należenia: .

    Grupa – jedna ze struktur algebraicznych: zbiór niepusty, na którym określono pewne łączne działanie dwuargumentowe wewnętrzne, dla którego istnieje element odwrotny do każdego elementu oraz element neutralny. Można powiedzieć, że grupą jest monoid, w którym każdy element ma element odwrotny. Dział matematyki badający własności grup nazywa się teorią grup.Formuła logiczna to określenie dozwolonego wyrażenia w wielu systemach logicznych, m.in. w rachunku kwantyfikatorów oraz w rachunku zdań.

    Elementy danego zbioru zwykło się zapisywać w nawiasach klamrowych; przykładowo zbiór składający się z czterech elementów zapisuje się zwykle symbolicznie w postaci

    Podzbiór – pewna „część” danego zbioru, czyli dla danego zbioru, nazywanego nadzbiorem, zbiór składający się z pewnej liczby jego elementów, np. żadnego, jednego, wszystkich. Pierwszy przypadek nazywa się podzbiorem pustym, drugi – podzbiorem jednoelementowym lub singletonem, trzeci – podzbiorem niewłaściwym.Antynomia Russella lub paradoks Russella – sprzeczność wykryta w naiwnej teorii mnogości przez Bertranda Russella w 1901 roku. Sprzeczność ta stanowiła duży cios dla rozwoju logicyzmu, będącego próbą aksjomatyzacji matematyki, zgodnie z którym wszystkie obiekty matematyczne powinny dać się wyrazić jako zbiory. Obserwacje dokonane przez Russella zmusiły matematyków do rewizji tego fundamentalnego stanowiska i następnie przyjęcia, że istnieją obiekty niebędące zbiorami, opisywane formułami logicznymi – nazywa się je klasami właściwymi. Paradoks ten wynika z autoreferencji, czyli odwoływania się do samego siebie, i ma charakter podobny do takich paradoksów jak paradoks zbioru wszystkich zbiorów, paradoks kłamcy czy paradoks Berry’ego; por. twierdzenia Gödla i problem stopu.

    jest to jedyny zbiór składający się z tych elementów, co oznacza, że napisy czy (kolejność podawania elementów nie ma znaczenia), bądź (wielokrotne wymienienie tego samego elementu niczego nie przydaje) oznaczają ten sam zbiór. Poniekąd najprostszym, choć dość nieintuicyjnym zbiorem jest zbiór nie zawierający żadnego elementu, tzw. zbiór pusty oznaczany zwykle symbolem Elementami zbiorów mogą być również inne zbiory – zbiory złożone ze zbiorów nazywa się zwykle rodzinami (zbiorów). Należy wyraźnie zaznaczyć, że zbiór nie ma elementów, podczas gdy do zbioru należy jeden element: zbiór pusty (jest to więc jednoelementowa rodzina zbiorów złożona ze zbioru pustego).

    Suma rozłączna - w teorii mnogości zmodyfikowana operacja sumy, w której zachowana została informacja o tym, z którego zbioru pochodzi każdy element.Nadwozie – część składowa pojazdu, ustawiona na podwoziu lub służąca do montażu jego elementów. Nadwozie składa się ze struktury nośnej i karoserii (poszycia). Pod względem struktury nośnej pojazdy dzielimy na konstrukcje ramowe (nadwozie nieniosące) i samonośne (samoniosące; bezramowe). Istnieją też konstrukcje pośrednie - nadwozie półniosące oraz samonośne z ramami częściowymi.

    Nie ma żadnego ograniczenia nałożonego na liczebność zbiorów, nazywaną ich mocą – moc zbioru oznaczana będzie dalej symbolem – wyróżnia się nawet różne hierarchie wielkości zbiorów związane z ich licznością (np. skala alefów, czy skala betów).

    Algebra ogólna – obiekt matematyczny będący przedmiotem badań algebry uniwersalnej. Czasami algebra uniwersalna nazywana jest algebrą ogólną, wówczas rozważane w niej obiekty nazywa się zwykle algebrami abstrakcyjnymi lub po prostu algebrami.Rozdzielność działań jest własnością pierścienia (a więc i ciała) określającą powiązanie dwóch operatorów: addytywnego (nazywanego zwykle dodawaniem) i multiplikatywnego (zwykle mnożenie).


    Podstrony: 1 [2] [3] [4]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Kwantyfikator – termin przyjęty w matematyce i logice matematycznej na oznaczenie zwrotów: dla każdego, istnieje takie i im pokrewnych, a także odpowiadającym im symbolom wiążacym zmienne w formułach. Są podstawowym elementem w rozwoju logiki pierwszego rzędu.
    Dopełnienie zbioru – intuicyjnie, zbiór wszystkich elementów (pewnego ustalonego nadzbioru), które do danego zbioru nie należą. W niektórych pozycjach można spotkać się również z alternatywną nazwą uzupełnienie zbioru.
    Teoria mnogości lub inaczej: teoria zbiorów – dział matematyki, a zarazem logiki matematycznej zapoczątkowany przez niemieckiego matematyka Georga Cantora pod koniec XIX wieku. Teoria początkowo wzbudzała wiele kontrowersji, jednak wraz z postępem matematyki zaczęła ona pełnić rolę fundamentu, na którym opiera się większość matematycznych rozważań.
    Działanie lub operacja – w matematyce i logice przyporządkowanie jednemu lub większej liczbie elementów nazywanych argumentami lub operandami elementu nazywanego wynikiem. Badaniem działań w ogólności zajmuje się dział nazywany algebrą uniwersalną, zbiory z choć jednym określonym na nim działaniem algebraicznym nazywa się algebrami ogólnymi (często krótko: algebrami), samą rodzinę działań określa się nazwą „sygnatura”.
    Rodzina indeksowana – w matematyce uogólnienie pojęcia rodziny zbiorów analogiczne do uogólnienia zbioru przez ciągi. Rodzinę indeksowaną zbiorów definiuje się określając wpierw ogólniejsze pojęcie rodziny indeksowanej elementów.
    Aksjomat (postulat, pewnik) (gr. αξιωμα [aksíoma] – godność, pewność, oczywistość) – jedno z podstawowych pojęć logiki matematycznej. Od czasów Euklidesa uznawano, że aksjomaty to zdania przyjmowane za prawdziwe, których nie dowodzi się w obrębie danej teorii matematycznej. We współczesnej matematyce definicja aksjomatu jest nieco inna:
    Liczby naturalne – liczby służące podawaniu liczności (trzy osoby, zob. liczebnik główny/kardynalny) i ustalania kolejności (trzecia osoba, zob. liczebnik porządkowy), poddane w matematyce dalszym uogólnieniom (odpowiednio: liczby kardynalne, liczby porządkowe). Badaniem własności liczb naturalnych zajmują się arytmetyka i teoria liczb. Według finitystów, zwolenników skrajnego nurtu filozofii matematyki, są to jedyne liczby, jakimi powinna zajmować się matematyka - słynne jest stwierdzenie propagatora arytmetyzacji wszystkich dziedzin matematyki Leopolda Kroneckera: Liczby całkowite stworzył dobry Bóg. Reszta jest dziełem człowieka.

    Reklama