l
  • Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia

  • Prowadzimy badanie na temat nowotworów.
    Potrzebna jest nam pomoc.




    Prosimy o wypełnienie
    anonimowego kwestionariusza

    Zajmie to ok. 10 - 15 minut.


    TAK - pomagam            NIE - odmawiam (zamknij)

    Zebrane informacje wykorzystane zostaną do celów naukowych.
    Temat nie został wyczerpany?
    Zapraszamy na Forum Naukowy.pl
    Jeśli posiadasz konto w serwisie Facebook rejestracja jest praktycznie automatyczna.
    Wystarczy kilka kliknięć.

    Zasada zachowania energii

    Przeczytaj także...
    Mechanika statystyczna (lub fizyka statystyczna) to gałąź fizyki, zajmująca się układami wielu oddziałujących ciał. Specyfiką tej teorii jest jej metoda. Poszczególne ciała są bowiem opisane przez zmienne losowe. Obliczenia prowadzone w ramach mechaniki statystycznej dotyczą średnich z tych zmiennych z wykorzystaniem metod statystycznych. Fizyczną podstawą mechaniki statystycznej jest termodynamika fenomenologiczna.Pierwsza zasada termodynamiki – jedno z podstawowych praw termodynamiki, jest sformułowaniem zasady zachowania energii dla układów termodynamicznych. Zasada stanowi podsumowanie równoważności ciepła i pracy oraz stałości energii układu izolowanego.
    Mechanika klasyczna – dział mechaniki w fizyce opisujący ruch ciał (kinematyka), wpływ oddziaływań na ruch ciał (dynamika) oraz badaniem równowagi ciał materialnych (statyka). Mechanika klasyczna oparta jest na prawach ruchu (zasadach dynamiki) sformułowanych przez Isaaca Newtona, dlatego też jest ona nazywana „mechaniką Newtona” (Principia). Mechanika klasyczna wyjaśnia poprawnie zachowanie się większości ciał w naszym otoczeniu.

    Zasada zachowania energii – empiryczne prawo fizyki, stwierdzające, że w układzie izolowanym suma wszystkich rodzajów energii układu jest stała (nie zmienia się w czasie). W konsekwencji, energia w układzie izolowanym nie może być ani utworzona, ani zniszczona, może jedynie zmienić się forma energii. Tak np. podczas spalania wodoru w tlenie energia chemiczna zmienia się w energię cieplną.

    Szczególna teoria względności (STW) – teoria fizyczna stworzona przez Alberta Einsteina w 1905 roku. Zmieniła ona sposób pojmowania czasu i przestrzeni opisane wcześniej w newtonowskiej mechanice klasycznej. Teoria pozwoliła usunąć trudności interpretacyjne i sprzeczności pojawiające się na styku mechaniki (zwanej obecnie klasyczną) i elektromagnetyzmu po ogłoszeniu przez Jamesa Clerka Maxwella teorii elektromagnetyzmu.Inaczej tensor energii-pędu jest tensorem wymiaru 4x4, będącym w ogólnej teorii względności źródłem zakrzywienia czasoprzestrzeni odczuwanego jako grawitacja. Każda jego składowa określa strumień czteropędu przez (trójwymiarową) hiperpowierzchnię przecinającą czterowymiarową czasoprzestrzeń fizyczną. Aby obliczyć składową [a,b] tego tensora w danym punkcie, bierzemy średnią (całkę) składowej a wektora czteropędu i dzielimy przez element hiperpowierzchni prostopadłej do wektora bazowego odpowiadającego wymiarowi b. Element [0,0] tego tensora to zwyczajna gęstość masy, składowe [0,a], gdzie 1 ≤ a ≤ 3 to gęstość pędu (średnia wartość pędu w jakimś obszarze, dzielona przez objętość tego obszaru), a część [a,b], gdzie a i b przyjmują wartości 1 do 3, to znany z techniki tensor napięć. Składowe diagonalne tego tensora to ciśnienie, a pozadiagonalne, to tzw. napięcie (albo naprężenie).

    Opis[ | edytuj kod]

    Zasada zachowania energii w mechanice klasycznej i kwantowej jest konsekwencją symetrii translacji (przesunięć) w czasie. Ma ona jednak w fizyce szersze znaczenie. Przyjmuje się, że zasada zachowania energii jest spełniona również w układach nieprzejawiających takiej symetrii i nie dających się opisywać przy użyciu formalizmu hamiltonowskiego. W ramach tego formalizmu wyprowadzany jest związek między zasadami zachowania a symetriami układów fizycznych. Przykładami takich układów są:

    Mechanika kwantowa (teoria kwantów) – teoria praw ruchu obiektów świata mikroskopowego. Poszerza zakres mechaniki na odległości czasoprzestrzenne i energie, dla których przewidywania mechaniki klasycznej nie sprawdzały się. Opisuje przede wszystkim obiekty o bardzo małych masach i rozmiarach - np. atom, cząstki elementarne itp. Jej granicą dla średnich rozmiarów lub średnich energii czy pędów jest mechanika klasyczna.Tarcie (pojęcie fizyczne, jeden z oporów ruchu) to całość zjawisk fizycznych towarzyszących przemieszczaniu się względem siebie dwóch ciał fizycznych (tarcie zewnętrzne) lub elementów tego samego ciała (tarcie wewnętrzne) i powodujących rozpraszanie energii podczas ruchu.
  • układy opisywane przez fizykę statystyczną, gdzie symetria w czasie dla całego układu nie jest zachowana,
  • układy związane z występowaniem siły tarcia,
  • inne układy, na przykład cechujące się przemianami nierównowagowymi, dla których opis hamiltonowski jest nieadekwatny.
  • W mechanice klasycznej, jeżeli równania ruchu są niezmiennicze ze względu na przesunięcia w czasie

    Czasoprzestrzeń Minkowskiego – przestrzeń liniowa w fizyce i matematyce, która łącząc czas z przestrzenią trówymiarową umożliwia formalny zapis równań szczególnej teorii względności Einsteina. Nazwę zawdzięcza niemieckiemu matematykowi Hermannowi Minkowskiemu, który opisał ją w 1907.Zasada – prawidłowość fizyczna stwierdzona doświadczalnie i, zgodnie z opinią uczonych oraz paradygmatem panującym w fizyce, powszechna i ogólna.
     t\rightarrow t'=t+t_{0},

    to siła F\, lub potencjał U\, nie może jawnie zależeć od czasu U(x,t')=U(x,t+t_0)=U(x,t) \rightarrow \frac{\partial U}{\partial t}=0.

    Konsekwencją równań Hamiltona (patrz mechanika klasyczna) jest stałość energii (hamiltonianu), bo: \frac{dH}{dt}=-\frac{\partial U}{\partial t}=0.

    Tak więc zachowana jest wielkość H(x,p)=\frac{p^2}{2m}+ U(x) = E =const.

    Symetria translacji w czasie jest szczególnym przypadkiem ogólniejszej symetrii związanej z niezmienniczością mechaniki klasycznej względem transformacji Galileusza x^i \rightarrow {x'}^i = x^i +v^i t +x^i_{0}, t \rightarrow t'=t+t_{0}.

    Transformacje te tworzą grupę Galileusza. W szczególnej teorii względności zachowanie energii jest również konsekwencją translacji w czasoprzestrzeni Minkowskiego

    Energia gr. ενεργεια (energeia) – skalarna wielkość fizyczna charakteryzująca stan układu fizycznego (materii) jako jego zdolność do wykonania pracy.Galileusz (wł. Galileo Galilei; ur. 15 lutego 1564 w Pizie, zm. 8 stycznia 1642 w Arcetri) – włoski astronom, astrolog, matematyk, fizyk i filozof, twórca podstaw nowożytnej fizyki.
    x^{\mu} \rightarrow {x'}^{\mu}={x}^{\mu}+ a^{\mu}.

    Pamiętając, że x^0 = ct\,, przypadek dla μ=0 odpowiada translacji czasu.

    Konsekwencją symetrii translacji w czasoprzestrzeni Minkowskiego jest zachowanie tensora energii - pędu.

    Z zasady zachowania energii wynika kilka innych zasad, m.in. pierwsza zasada termodynamiki i zasada zachowania energii mechanicznej.

    Zobacz też[ | edytuj kod]

  • Równoważność masy i energii
  • Równoważność masy i energii – funkcjonujące w obrębie interpretacji szczególnej teorii względności sformułowanie, oznaczające faktycznie dwie odmienne koncepcje.Potencjał - pole skalarne określające pewne pole wektorowe. W fizyce dla wielu pól różnica potencjałów w dwóch punktach określa ilość energii koniecznej do przemieszczenia ciała z jednego punktu do drugiego.



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Czy wiesz że...? beta

    Równania Hamiltona - w mechanice teoretycznej układ równań opisujących zmianę parametrów układu opisywanego za pomocą funkcji Hamiltona (pędów i położeń cząstek). Jest to układ 2s równań różniczkowych zwyczajnych pierwszego rzędu. Dla hamiltonianu postaci:
    Układ fizyczny - układ (wyodrębniony, realnie lub jedynie myślowo, fragment rzeczywistości), w postaci obiektu fizycznego lub zbioru takich obiektów. Może on być oddzielony od otoczenia wyraźnymi granicami, które są powierzchniami nieciągłości określonych wielkości fizycznych, charakteryzujących układ. W znaczeniu używanym w mechanice klasycznej to przede wszystkim zbiór ciał.
    Hamiltonian (funkcja Hamiltona) – w klasycznej mechanice teoretycznej funkcja współrzędnych uogólnionych i pędów uogólnionych, opisującą układ fizyczny.
    Translacja, przesunięcie – przekształcenie prostej, płaszczyzny lub dowolnej przestrzeni afinicznej, które można intuicyjnie rozumieć jako równoległe przesunięcie wszystkich punktów dziedziny bez deformacji i obracania.

    Reklama

    tt