• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Wymiar - matematyka



    Podstrony: 1 [2] [3] [4] [5]
    Przeczytaj także...
    Przestrzeń euklidesowa – przestrzeń o geometrii euklidesowej. Jest ona naturalnym elementem modeli świata rzeczywistego (łac. geometria = mierzenie ziemi) i stanowi dobre przybliżenie przestrzeni fizycznych w warunkach makroskopowych, jednak nie nadaje się do opisu rzeczywistości w bardzo małych, atomowych, lub bardzo wielkich, astronomicznych, wielkościach. Jednowymiarowa przestrzeń euklidesowa nazywana jest prostą euklidesową, zaś dwuwymiarowa – płaszczyzną euklidesową. Przestrzenie te nazywa się również przestrzeniami afinicznymi euklidesowymi w odróżnieniu od przestrzeni liniowych euklidesowych, znanych szerzej jako przestrzenie unitarne.Moc zbioru – własność zbioru, która opisuje jego liczebność. Nieformalnie, moc zbioru jest tym większa im większy jest zbiór. Pojęcie mocy zbioru opiera się na pojęciu równoliczności dwóch zbiorów – zbiory A i B są równoliczne, gdy każdy element zbioru A można połączyć w parę z dokładnie jednym elementem zbioru B, innymi słowy istnieje bijekcja (funkcja różnowartościowa i "na") między zbiorami A i B. Zbiory równoliczne mają tę samą moc. Moce zbiorów są konkretnymi obiektami matematycznymi, nazywanymi liczbami kardynalnymi.

    Wymiar – minimalna liczba niezależnych parametrów potrzebnych do opisania jakiegoś zbioru. Zatem jest to liczba przypisana zbiorowi lub przestrzeni w taki sposób, by punkt miał w.=0, prosta w.=1, płaszczyzna w.=2 itd.

    Spis treści

  • 1 Wstęp
  • 2 Wymiar przestrzeni liniowej
  • 3 Wymiar przestrzeni Hilberta
  • 4 Mały wymiar indukcyjny Mengera-Urysohna (topologia)
  • 4.1 Definicja
  • 4.2 Historia
  • 5 Duży wymiar indukcyjny Borela-Čecha (topologia)
  • 5.1 Definicja
  • 6 Wymiar pokryciowy Čecha-Lebesgue'a (topologia)
  • 6.1 Historia pojęcia
  • 7 Wymiar rozmaitości topologicznej
  • 8 Wymiar fraktalny, wymiar Hausdorffa
  • 9 Równoważność definicji wymiaru
  • 10 Bibliografia
  • Trójkąt Sierpińskiego (znany też jako uszczelka Sierpińskiego) – jeden z najprostszych fraktali. Znany był na długo przed powstaniem tego pojęcia (patrz Benoit Mandelbrot). Konstrukcja tego zbioru była podana przez polskiego matematyka Wacława Sierpińskiego w 1915.Przestrzeń ośrodkowa to przestrzeń topologiczna, która zawiera przeliczalny podzbiór gęsty (czasem zwany ośrodkiem).

    Wstęp[]

    W przypadku (wielowymiarowej) przestrzeni euklidesowej, wymiarem przestrzeni jest maksymalna liczba wzajemnie prostopadłych prostych, przechodzących przez dany punkt.

    Pojęcie wymiaru jest uogólnieniem naturalnych intuicji, że prosta jest obiektem jedno-, płaszczyzna dwu-, a zwykła przestrzeń - trójwymiarowym. W zależności od sposobu dokonywania uogólnień otrzymujemy różne definicje wymiaru, jednak szereg z nich zgadza się dla przestrzeni euklidesowych.

    Definicja (z łac. definitio; od czas. definire: de + finire, "do końca, granicy"; od finis: granica, koniec) – wypowiedź o określonej budowie, w której informuje się o znaczeniu pewnego wyrażenia przez wskazanie innego wyrażenia należącego do danego języka i posiadającego to samo znaczenie.Linia prosta lub prosta – jedno z podstawowych pojęć geometrii, szczególny przypadek nieograniczonej z obydwu stron krzywej o nieskończonym promieniu krzywizny w każdym punkcie.


    Podstrony: 1 [2] [3] [4] [5]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Przestrzeń trójwymiarowa - potoczna nazwa przestrzeni euklidesowej o trzech wymiarach, lub równoważnej jej przestrzeni kartezjańskiej. Przymiotnik "trójwymiarowa" oznacza, że każdemu punktowi tej przestrzeni odpowiada trójka uporządkowana liczb rzeczywistych, zwanych współrzędnymi. Każdej trójce liczb rzeczywistych także odpowiada punkt tej przestrzeni.
    Przestrzeń metryczna – zbiór z zadaną na nim metryką, tj. funkcją, która określa odległość między każdą parą elementów tego zbioru.
    Cegła – materiał budowlany w kształcie prostopadłościanu (także klina, wycinka pierścienia kołowego lub kształtki) uformowany z gliny, wapna, piasku, cementu (bloczki betonowe) lub innych surowców mineralnych, który wytrzymałość mechaniczną i odporność na wpływy atmosferyczne uzyskuje poprzez proces suszenia, wypalania lub naparzania parą wodną. Cegły służą m.in. do wznoszenia ścian, murów, filarów, słupów, a także fundamentów i ścian fundamentowych. Cegły mogą też być wypełnieniem stropów (strop Kleina).
    Przestrzeń Hilberta – w analizie funkcjonalnej rzeczywista lub zespolona przestrzeń unitarna (tj. przestrzeń liniowa nad ciałem liczb rzeczywistych lub zespolonych z abstrakcyjnym iloczynem skalarnym), zupełna ze względu na indukowaną (poprzez normę) z iloczynu skalarnego tej przestrzeni metrykę. Jako unormowana i zupełna, każda przestrzeń Hilberta jest przestrzenią Banacha, a przez to przestrzenią Frécheta, a stąd lokalnie wypukłą przestrzenią liniowo-topologiczną. Przestrzenie te noszą nazwisko Davida Hilberta, który wprowadził je pod koniec XIX wieku; są one podstawowym narzędziem wykorzystywanym w wielu dziedzinach fizyki, m.in. w mechanice kwantowej (np. przestrzeń Foka nad przestrzenią Hilberta).
    Przestrzeń liniowa lub wektorowa – w matematyce zbiór obiektów (nazywanych "wektorami"), które mogą być, nieformalnie rzecz ujmując, skalowane i dodawane. Formalnie jest to zbiór z określonymi dwoma działaniami: dodawaniem elementów tej przestrzeni (wektorów) i mnożeniem przez elementy ustalonego ciała, które związane są ze sobą poniższymi aksjomatami. Przestrzenie liniowe to podstawowy obiekt badań algebry liniowej i analizy funkcjonalnej. Znajdują zastosowanie niemal we wszystkich gałęziach matematyki, naukach ścisłych i inżynierii.
    Topologia (gr. tópos – miejsce, okolica; lógos – słowo, nauka) – jeden z najważniejszych kierunków w matematyce współczesnej. Obiektem jej badań są te własności figur geometrycznych i brył, które nie ulegają zmianie nawet po radykalnym zdeformowaniu tych figur (a więc np. położenie i sąsiedztwo). Własności takie nazywa się własnościami topologicznymi figury.
    Wymiar pudełkowy (objętościowy, pojemnościowy) - uogólnienie intuicyjnego pojęcia wymiaru, zdefiniowane przez Andrieja Kołmogorowa.

    Reklama

    Czas generowania strony: 0.033 sek.