• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Wielomian



    Podstrony: [1] [2] 3 [4] [5]
    Przeczytaj także...
    Przekształcenie liniowe – w algebrze liniowej funkcja między przestrzeniami liniowymi (nad ustalonym ciałem) zachowująca ich strukturę; z punktu widzenia algebry jest to zatem homomorfizm (a z punktu widzenia teorii kategorii – morfizm kategorii) przestrzeni liniowych nad ustalonym ciałem. W przypadku przestrzeni skończonego wymiaru z ustalonymi bazami do opisu przekształceń liniowych między nimi stosuje się zwykle macierze (zob. wybór baz).Funkcja wymierna – funkcja będąca ilorazem funkcji wielomianowych. Iloraz wielomianów realizujących dane funkcje wielomianowe nazywa się wyrażeniem wymiernym. Można powiedzieć, że funkcje wymierne mają się tak do funkcji wielomianowych jak liczby wymierne do liczb całkowitych.
    Wykresy[]

    W prostokątnym układzie współrzędnych:

  • Wykres przecina on pionową oś w punkcie , gdzie to wyraz wolny tego wielomianu;
  • Wielomian zerowy i wielomian stopnia zerowego posiadają wykres będący prostą równoległą do poziomej osi;
  • Wykresem wielomianu stopnia pierwszego jest prosta o współczynniku kierunkowym równym najstarszemu współczynnikowi wielomianu;
  • Wykresem wielomianu stopnia drugiego lub wyższego jest krzywa ciągła, niebędąca prostą. Wykresem wielomianu stopnia drugiego jest parabola.
  • W odciętej, gdzie pierwiastek wielomianu jest parzystokrotny, krzywa jest styczna do poziomej osi. W przeciwnym przypadku, krzywa przecina poziomą oś układu współrzędnych.
  • Wykresy wielomianów można badać używając metod analizy matematycznej (przecięcia z osiami, punkty przegięcia, wypukłość, zachowanie w nieskończoności itd.)

    Szybka transformacja Fouriera (ang. FFT od Fast Fourier Transform) to algorytm liczenia dyskretnej transformaty Fouriera oraz transformaty do niej odwrotnej.Niech będzie dana funkcja f : U → R {displaystyle fcolon {mathcal {U}} o {}mathbb {R} } , gdzie U ⊆ R n {displaystyle {mathcal {U}}subseteq {}mathbb {R} ^{n}} oraz k ∈ N ∪ { ∞ } {displaystyle kin mathbb {N} cup {infty }} . Funkcję f {displaystyle f} nazywamy funkcją regularną rzędu k {displaystyle k} na U {displaystyle {mathcal {U}}} , jeżeli:

    Zastosowania[]

    Analiza matematyczna[]

    Wielomiany ze względu na swoje „silne” własności (ciągłość, różniczkowalność) odgrywają ważną rolę w analizie matematycznej.

    Wielomiany służą przybliżaniu (aproksymacji) funkcji. Do ważniejszych wyników w tej dziedzinie należą:

  • Twierdzenie Weierstrassa: każdą funkcję ciągłą na przedziale domkniętym można z dowolną dokładnością przybliżać wielomianami.
  • Układy wielomianów ortogonalnych takie jak wielomiany Czebyszewa i Legendre'a.
  • Analiza numeryczna[]

    Mając dany dowolny -elementowy zbiór punktów w którym są parami różne, istnieje wielomian stopnia co najwyżej którego wykres przechodzi przez te punkty. Zagadnienie znalezienia tego wielomianu nazywa się interpolacją wielomianową. Interpolacja może służyć do przybliżania funkcji wielomianami.

    Linia prosta lub prosta – jedno z podstawowych pojęć geometrii, szczególny przypadek nieograniczonej z obydwu stron krzywej o nieskończonym promieniu krzywizny w każdym punkcie.Liczba przeciwna do danej liczby a , {displaystyle a,;} to taka liczba − a , {displaystyle -a,;} że zachodzi:

    Wielomian interpolacyjny istnieje dokładnie jeden. W szczególności wynika stąd, że jeśli dwa wielomiany stopnia nie większego od przyjmują takie same wartości w punktach to są równe.

    Łączność – jedna z własności działań dwuargumentowych, czyli np. operatorów arytmetycznych. Pojęcie to występuje w dwóch znaczeniach.Funkcje specjalne – umowna nazwa grupy funkcji, które nie są funkcjami elementarnymi, a jednocześnie odgrywają ważną rolę w wielu dziedzinach nauki. Funkcje specjalne zostały szczegółowo przebadane i stablicowane, a wiele programów komputerowych może obliczać ich wartości z dowolną dokładnością. Podstawowe funkcje specjalne są rozwiązaniami równań różniczkowych liniowych rzędu drugiego, o zmiennych współczynnikach. Niektóre funkcje specjalne stanowią rozwiązania równań różniczkowych nieliniowych drugiego i wyższych rzędów.

    Do interpolowania można używać postaci Lagrange'a i postaci Newtona.

    Algebra liniowa[]

    W ujęciu algebry liniowej każdy wielomian jest kombinacją liniową funkcji potęgowych postaci , gdzie . Zbiór wielomianów rzeczywistych lub urojonych jest podprzestrzenią liniową przestrzeni wszystkich funkcji określonych odpowiednio na lub . Twierdzenie Stone’a-Weierstrassa mówi, że przestrzeń wielomianów jest zbiorem gęstym w przestrzeni Banacha z normą supremum.

    Rugownik – dla dwóch wielomianów wyrażenie zależne od ich współczynników, które jest równe zero wtedy i tylko wtedy, gdy wielomiany te mają wspólny pierwiastek.Zasadnicze (podstawowe) twierdzenie algebry – twierdzenie algebry i analizy zespolonej mówiące, że każdy wielomian zespolony stopnia dodatniego ma pierwiastek (w ciele liczb zespolonych). Innymi słowy, ciało liczb zespolonych jest algebraicznie domknięte. Konsekwencją zasadniczego twierdzenia algebry i twierdzenia Bézouta jest następujące twierdzenie (często zwane również zasadniczym twierdzeniem algebry):

    Ważnym obiektem związanym z pojęciami macierzy oraz przekształcenia liniowego jest ich wielomian charakterystyczny.

    Algorytmika[]

    Naiwny algorytm obliczenia wartości wielomianu w punkcie wymaga mnożeń (zob. asymptotyczne tempo wzrostu). Zapisując wielomian w postaci:

    Szereg – konstrukcja umożliwiająca wykonanie uogólnionego dodawania przeliczalnej liczby składników. Przykładem znanego szeregu jest dychotomia Zenona z EleiCałka – ogólne określenie wielu różnych, choć powiązanych ze sobą pojęć analizy matematycznej. W artykule rachunek różniczkowy i całkowy podana jest historia ewolucji znaczenia samego słowa całka. Najczęściej przez "całkę" rozumie się całkę oznaczoną lub całkę nieoznaczoną (rozróżnia się je zwykle z kontekstu).

    potrzebny czas skraca się do . Powyższy sposób obliczania, nazywany schematem Hornera, może służyć również do szybkiego dzielenia wielomianu przez dwumian . Po znalezieniu pierwiastka równania można dzięki temu szybko obniżyć jego stopień.

    Asymptotyczne tempo wzrostu jest miarą określającą zachowanie wartości funkcji wraz ze wzrostem jej argumentów. Stosowane jest szczególnie często w teorii obliczeń, w celu opisu złożoności obliczeniowej, czyli zależności ilości potrzebnych zasobów (np. czasu lub pamięci) od rozmiaru danych wejściowych algorytmu. Asymptotyczne tempo wzrostu opisuje jak szybko dana funkcja rośnie lub maleje, abstrahując od konkretnej postaci tych zmian.Felix Christian Klein (ur. 25 kwietnia 1849 w Düsseldorfie, zm. 22 czerwca 1925 w Getyndze) – niemiecki matematyk, profesor uniwersytetów Friedrich-Alexander-Universität Erlangen-Nürnberg, Uniwersytu w Lipsku i Getyndze oraz politechniki w Monachium. Od 1913 członek Berlińskiej Akademii Nauk.

    Naiwny algorytm mnożenia dwóch wielomianów stopnia wymaga czasu . Za pomocą szybkiej transformaty Fouriera (FFT) czas ten można zmniejszyć do . Mówiąc w uproszczeniu, algorytm mnożenia wpierw przedstawia czynniki za pomocą listy ich wartości w zespolonych pierwiastkach z 1 (ewaluacja), dokonuje mnożenia i powraca do pierwotnej postaci (interpolacja).

    Twierdzenie o dzieleniu z resztą – twierdzenie matematyczne mówiące o możliwości przedstawienia danej liczby całkowitej, dzielnej, w postaci sumy iloczynu ilorazu przez (niezerowy) dzielnik oraz reszty. Innymi słowy twierdzenie mówi, ile razy (iloraz) dana liczba (dzielnik) mieści się w całości w innej (dzielna) oraz jaka część (reszta) tej liczby nie została wydzielona. Stosuje się także skróconą wersję nazwy: twierdzenie o dzieleniu.Leopold Kronecker (ur. 7 grudnia 1823 w Legnicy, zm. 29 grudnia 1891 w Berlinie) – niemiecki matematyk i logik. Brat Hugona Kroneckera.

    Uogólnienia[]

     Zapoznaj się również z: pierścień wielomianów.

    Zniesienie ograniczenia dotyczącego liczby wyrazów prowadzi do pojęcia szeregu potęgowego. Wiele ważnych funkcji daje się rozwinąć w szereg potęgowy (często ich istotność wynika właśnie z tego faktu), co ułatwia badanie ich własności. Przykładowo funkcja wykładnicza ma rozwinięcie:

    Szereg Laurenta funkcji zespolonej f(z) to reprezentacja tej funkcji w postaci szeregu potęgowego, w którym występują również składniki o wykładniku ujemnym. Rozwinięcia tego używa się, gdy funkcji nie można rozwinąć w szereg Taylora. Nazwa szeregu pochodzi od nazwiska Pierre Alphonse Laurenta, który opublikował go w 1843 roku.Wzory Viète’a – wzory wiążące pierwiastki wielomianu z jego współczynnikami. Ich nazwa pochodzi od nazwiska francuskiego matematyka François Viète’a.
    .

    Każdy wielomian będący wynikiem wzięcia pewnej skończonej liczby (zwykle początkowych) wyrazów tej sumy jest przybliżeniem funkcji. Rozwijanie funkcji w szeregi jest szczególnie ważne w przypadku funkcji, które nie są elementarne (zob. funkcje specjalne).

    Rozdzielność działań jest własnością pierścienia (a więc i ciała) określającą powiązanie dwóch operatorów: addytywnego (nazywanego zwykle dodawaniem) i multiplikatywnego (zwykle mnożenie).Twierdzenie odwrotne – dla danego twierdzenia twierdzenie w którym założenie zamieniono z tezą wyjściowego twierdzenia. Niech będzie dane twierdzenie: jeśli A, to B; wtedy twierdzenie odwrotne do niego jest zdaniem jeśli B, to A. Twierdzenie odwrotne do danego prawdziwego twierdzenia nie musi być zdaniem prawdziwym. Twierdzenie odwrotne jest równoważne twierdzeniu przeciwnemu.

    Inną możliwością jest zdefiniowanie wielomianów jako skończonych napisów formalnych, w których współczynniki wzięte są z dowolnego pierścienia. Tego typu napisy dla porządnych pierścieni umożliwiają nawet uprawianie analizy, gdzie wiele pojęć zdefiniowanych jest także formalnie (pochodna, pierwotna wielomianu). Kolejnym uogólnieniem jest szereg formalny będący połączeniem dwóch powyższych możliwości.

    Liczby całkowite – liczby naturalne dodatnie N + = { 1 , 2 , 3 , … } {displaystyle mathbb {N} _{+}={1,2,3,dots }} oraz liczby przeciwne do nich { − 1 , − 2 , − 3 , … } {displaystyle {-1,-2,-3,dots }} , a także liczba zero. Uogólnieniem liczb całkowitych są liczby wymierne i tym samym liczby rzeczywiste, szczególnym przypadkiem liczb całkowitych są: liczby naturalne.Ciąg – w matematyce pojęcie oddające intuicję ponumerowania, czy też uporządkowania elementów zbioru. W zależności od rodzaju elementów zbioru stosuje się różne nazwy: w przypadku liczb mówi się o ciągach liczbowych, bądź bardziej precyzyjnie, np. w przypadku zbioru liczb całkowitych, rzeczywistych czy zespolonych, ciąg nazywa się wtedy odpowiednio ciągiem całkowitoliczbowym, rzeczywistym i zespolonym. Jeśli elementami zbioru są funkcje, to ciąg nazywa się ciągiem funkcyjnym. Ciąg powstały poprzez wybranie elementów innego ciągu nazywa się podciągiem.

    Pójściem w innym kierunku jest przyzwolenie na wyrazy o wykładnikach całkowitych, a nie tylko naturalnych – wielomiany takie nazywa się wielomianami Laurenta. Rozszerzenie wielomianów Laurenta w sposób podobny do rozszerzenia zwykłych wielomianów do szeregów potęgowych nazywa się szeregiem Laurenta.

    Twierdzenie Hurwitza – twierdzenie dotyczące własności pierwiastków zespolonych pewnych wielomianów o współczynnikach rzeczywistych. Jego autorem jest niemiecki matematyk Adolf Hurwitz.Wielomiany Czebyszewa – układ wielomianów ortogonalnych tworzący bazę wielomianów, nazwa pochodzi od nazwiska Pafnutija Czebyszewa.


    Podstrony: [1] [2] 3 [4] [5]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Zmienna – symbol, oznaczający wielkość, która może przyjmować rozmaite wartości. Wartości te na ogół należą do pewnego zbioru, który jest określony przez naturę rozważanego problemu. Zbiór ten nazywamy zakresem zmiennej.
    Pochodna formalna – operacja na elementach pierścieni wielomianów lub pierścieni szeregów formalnych naśladująca własności pochodnej funkcji znanej z analizy matematycznej. Pochodna formalna ułatwia badanie pierwiastków wielomianu: są one wielokrotne, jeśli są zarazem pierwiastkami pochodnej wielomianu.
    Liczby naturalne – liczby służące podawaniu liczności (trzy osoby, zob. liczebnik główny/kardynalny) i ustalania kolejności (trzecia osoba, zob. liczebnik porządkowy), poddane w matematyce dalszym uogólnieniom (odpowiednio: liczby kardynalne, liczby porządkowe). Badaniem własności liczb naturalnych zajmują się arytmetyka i teoria liczb. Według finitystów, zwolenników skrajnego nurtu filozofii matematyki, są to jedyne liczby, jakimi powinna zajmować się matematyka - słynne jest stwierdzenie propagatora arytmetyzacji wszystkich dziedzin matematyki Leopolda Kroneckera: Liczby całkowite stworzył dobry Bóg. Reszta jest dziełem człowieka.
    Równanie sześcienne lub trzeciego stopnia – równanie algebraiczne postaci a x 3 + b x 2 + c x + d = 0 , {displaystyle ax^{3}+bx^{2}+cx+d=0,} gdzie a ≠ 0. {displaystyle a eq 0.} Każde równanie sześcienne o współczynnikach rzeczywistych ma przynajmniej jeden pierwiastek rzeczywisty.
    Stopień jednomianu – suma wszystkich wykładników potęg przy zmiennych niezerowego jednomianu, np. jednomian x y = x 1 y 1 {displaystyle xy=x^{1}y^{1}} jest stopnia drugiego.
    Pierścień – struktura formalizująca własności algebraiczne liczb całkowitych oraz arytmetyki modularnej; intuicyjnie zbiór, którego elementy mogą być bez przeszkód dodawane, odejmowane i mnożone, lecz niekoniecznie dzielone. Badanie pierścieni umożliwiło uogólnienie innych pojęć matematycznych takich, jak np. liczby pierwsze (przez ideały pierwsze), wielomiany, ułamki oraz rozwinięcie teorii podzielności i wskazania przy tym najogólniejszej struktury, w której możliwe jest stosowanie algorytmu Euklidesa (tzw. pierścień Euklidesa). Dział matematyki opisujący te struktury nazywa się teorią pierścieni.
    Twierdzenie Abela-Ruffiniego – głosi, że pierwiastki równania algebraicznego stopnia wyższego niż 4 nie dają się wyrazić w ogólnej postaci za pomocą czterech działań algebraicznych i pierwiastkowania poprzez współczynniki równania w skończonej liczbie kroków (czyli poprzez tak zwane pierwiastniki).

    Reklama

    Czas generowania strony: 0.063 sek.