• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Wielokrotność



    Podstrony: 1 [2] [3] [4]
    Przeczytaj także...
    Wielomian – wyrażenie algebraiczne złożone ze zmiennych i stałych połączonych działaniami dodawania, odejmowania, mnożenia i podnoszenia do potęgi o stałym wykładniku naturalnym.Dzielnik – liczba całkowita, która dzieli bez reszty daną liczbę całkowitą. W matematyce elementarnej dzielnikiem nazywa się dowolną liczbę, przez którą się dzieli. W notacji matematycznej stwierdzenie „ m {displaystyle m} jest dzielnikiem n {displaystyle n} ” zapisuje się jako m ∣ n {displaystyle mmid n} .
    Warto wiedzieć że... beta

    Teoria grup – dział algebry, uważany za dość autonomiczną dziedzinę matematyki (w szczególności teoria grup abelowych, czyli przemiennych), który bada własności struktur algebraicznych nazywanych grupami, czyli zbiorów z wyróżnionym łącznym dwuargumentowym działaniem wewnętrznym mającym element neutralny i w którym każdy element jest odwracalny.
    Grupa – jedna ze struktur algebraicznych: zbiór niepusty, na którym określono pewne łączne działanie dwuargumentowe wewnętrzne, dla którego istnieje element odwrotny do każdego elementu oraz element neutralny. Można powiedzieć, że grupą jest monoid, w którym każdy element ma element odwrotny. Dział matematyki badający własności grup nazywa się teorią grup.
    Liczby całkowite – liczby naturalne dodatnie N + = { 1 , 2 , 3 , … } {displaystyle mathbb {N} _{+}={1,2,3,dots }} oraz liczby przeciwne do nich { − 1 , − 2 , − 3 , … } {displaystyle {-1,-2,-3,dots }} , a także liczba zero. Uogólnieniem liczb całkowitych są liczby wymierne i tym samym liczby rzeczywiste, szczególnym przypadkiem liczb całkowitych są: liczby naturalne.
    Najmniejsza wspólna wielokrotność dwóch lub więcej liczb naturalnych a1, a2,... ,an - najmniejsza liczba naturalna ze zbioru wszystkich liczb naturalnych, których dzielnikiem jest każda z liczb a1,...,an, i na przykład dla liczb 15 i 240 jest to liczba 240, a dla liczb 192 i 348 - liczba 5568. Najmniejszą wspólną wielokrotność oznacza się często symbolem NWW(a1,...,an).
    Permutacja – wzajemnie jednoznaczne przekształcenie pewnego zbioru na siebie. Najczęściej termin ten oznacza funkcję na zbiorach skończonych.
    Liczby naturalne – liczby służące podawaniu liczności (trzy osoby, zob. liczebnik główny/kardynalny) i ustalania kolejności (trzecia osoba, zob. liczebnik porządkowy), poddane w matematyce dalszym uogólnieniom (odpowiednio: liczby kardynalne, liczby porządkowe). Badaniem własności liczb naturalnych zajmują się arytmetyka i teoria liczb. Według finitystów, zwolenników skrajnego nurtu filozofii matematyki, są to jedyne liczby, jakimi powinna zajmować się matematyka - słynne jest stwierdzenie propagatora arytmetyzacji wszystkich dziedzin matematyki Leopolda Kroneckera: Liczby całkowite stworzył dobry Bóg. Reszta jest dziełem człowieka.
    Pierścień – struktura formalizująca własności algebraiczne liczb całkowitych oraz arytmetyki modularnej; intuicyjnie zbiór, którego elementy mogą być bez przeszkód dodawane, odejmowane i mnożone, lecz niekoniecznie dzielone. Badanie pierścieni umożliwiło uogólnienie innych pojęć matematycznych takich, jak np. liczby pierwsze (przez ideały pierwsze), wielomiany, ułamki oraz rozwinięcie teorii podzielności i wskazania przy tym najogólniejszej struktury, w której możliwe jest stosowanie algorytmu Euklidesa (tzw. pierścień Euklidesa). Dział matematyki opisujący te struktury nazywa się teorią pierścieni.

    Reklama