• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Warstwa - teoria grup



    Podstrony: 1 [2] [3] [4] [5]
    Przeczytaj także...
    Zbiory rozłączne – dwa zbiory, których część wspólna jest zbiorem pustym. Inaczej mówiąc, zbiory nie mające wspólnego elementu.Moc zbioru – własność zbioru, która opisuje jego liczebność. Nieformalnie, moc zbioru jest tym większa im większy jest zbiór. Pojęcie mocy zbioru opiera się na pojęciu równoliczności dwóch zbiorów – zbiory A i B są równoliczne, gdy każdy element zbioru A można połączyć w parę z dokładnie jednym elementem zbioru B, innymi słowy istnieje bijekcja (funkcja różnowartościowa i "na") między zbiorami A i B. Zbiory równoliczne mają tę samą moc. Moce zbiorów są konkretnymi obiektami matematycznymi, nazywanymi liczbami kardynalnymi.

    Warstwapodzbiór danej grupy będący jednym z równolicznych elementów jej podziału wyznaczonego przez ustaloną podgrupę, czyli klasa równoważności pewnej relacji równoważności związanej ze wspomnianą podgrupą; jako klasy ustalonej równoważności są one rozłączne, niepuste i wyczerpują całą grupę.

    Przekształcenie liniowe – w algebrze liniowej funkcja między przestrzeniami liniowymi (nad ustalonym ciałem) zachowująca ich strukturę; z punktu widzenia algebry jest to zatem homomorfizm (a z punktu widzenia teorii kategorii – morfizm kategorii) przestrzeni liniowych nad ustalonym ciałem. W przypadku przestrzeni skończonego wymiaru z ustalonymi bazami do opisu przekształceń liniowych między nimi stosuje się zwykle macierze (zob. wybór baz).Grupa diedralna a. dwuścianu – w teorii grup, dziale algebry, grupa przekształceń, mianowicie izometrii płaszczyznowych, wielokąta foremnego przekształcająca go na siebie (tzw. „izometrii własnych”) albo ogólniej: dowolna grupa o strukturze identycznej ze strukturą grupy symetrii tego wielokąta (tzn. z nią izomorficzną); zarazem jest to grupa izometrii parzystych (tzn. zachowujących orientację) dwuścianu foremnego w trójwymiarowej przestrzeni euklidesowej: symetriom wielokąta odpowiadają obroty przestrzeni trójwymiarowej.

    Każda podgrupa wyznacza dwie relacje równoważności o tej samej liczbie warstw – liczbę tę nazywa się indeksem tej podgrupy względem danej grupy; elementy jednego podziału nazywa się warstwami lewostronnymi, zaś drugiego – prawostronnymi, co ma swoje źródło w charakteryzacji tych zbiorów (zob. Definicja i Własności). Jeżeli obie wspomniane relacje równoważności wprowadzają ten sam podział, to podgrupę wyznaczającą te relacje (ten podział) nazywa się podgrupą normalną. Pojęcie warstwy umożliwia więc algebraiczną charakteryzację klas tych relacji równoważności, które wprowadzają w grupie podział respektujący jej strukturę; przy założeniu normalności podgrupy wyznaczającej podział zbioru elementów grupy, można na nim (tj. zbiorze ilorazowym) określić strukturę grupy nazywanej grupą ilorazową (zob. Normalność).

    Trójkąt równoboczny – trójkąt, którego wszystkie boki mają taką samą długość (oznaczmy ją a {displaystyle a,} ). Taki trójkąt ma następujące własności:Kongruencja a. przystawanie – relacja równoważności określona w danym systemie algebraicznym. Jedną z najbardziej znanych kongruencji jest przystawanie liczb całkowitych.

    Motywacja[]

     Zapoznaj się również z: rozbicie zbioru, relacja równoważnościkongruencja.
    Graf przedstawia funkcję, która wprowadza podział w zbiorze mianowicie dzieli ona dziedzinę na dwa zbiory oraz będące włóknami odpowiednio nad elementami tworzącymi obraz zbioru który można utożsamiać z rzutem kanonicznym wprowadzanej relacji równoważności. Uwaga: włókna mogą mieć dowolną, niezerową liczbę elementów; analogiczna konstrukcja dla grup wymusza, by włókna (warstwy) były równoliczne.

    Podział zbioru można przeprowadzić określając na nim relację równoważności która podzieli go na rozłączne, niepuste i sumujące się do klasy o wskazanej przez własności. Każdą relację na można z kolei wprowadzić za pomocą pewnej funkcji dwa elementy pozostają ze sobą w relacji wtedy i tylko wtedy, gdy ich obrazy w funkcji są równe,

    Jądro – dla danej struktury algebraicznej homomorficzny przeciwobraz elementu neutralnego. Dla danego homomorfizmu f {displaystyle f} jego jądro oznacza się zwykle ker  f {displaystyle {mbox{ker }}f} (od ang. kernel)Jerzy Browkin (ur. 5 listopada 1934, zm. 23 listopada 2015 w Warszawie) – polski matematyk zajmujący się algebraiczną teorią liczb. W 1994, wspólnie z Juliuszem Brzezińskim, sformułował n-hipotezę, tj. uogólnienie hipotezy abc na liczby całkowite n ≥ 3.

    mówi się też wtedy, że należą do jądra funkcji

    Grupa – jedna ze struktur algebraicznych: zbiór niepusty, na którym określono pewne łączne działanie dwuargumentowe wewnętrzne, dla którego istnieje element odwrotny do każdego elementu oraz element neutralny. Można powiedzieć, że grupą jest monoid, w którym każdy element ma element odwrotny. Dział matematyki badający własności grup nazywa się teorią grup.Podzbiór – pewna „część” danego zbioru, czyli dla danego zbioru, nazywanego nadzbiorem, zbiór składający się z pewnej liczby jego elementów, np. żadnego, jednego, wszystkich. Pierwszy przypadek nazywa się podzbiorem pustym, drugi – podzbiorem jednoelementowym lub singletonem, trzeci – podzbiorem niewłaściwym.

    Innymi słowy utożsamiane są te elementy dziedziny, które w obrazie przekształcane są na ten sam element zbiór tych elementów dziedziny, czyli nazywa się włóknem bądź poziomicą albo warstwicą nad Obraz można z kolei utożsamiać ze zbiorem klas równoważności czyli funkcja wyznacza i jest wyznaczana przez odwzorowanie ilorazowe

    Rząd – w teorii grup pojęcie oddające intuicję „rozmiaru” (w sensie „rzędu wielkości”) danej grupy i ułatwiające przy tym opis jej podgrup; w szczególności rzędem elementu nazywa się rząd („rozmiar”) najmniejszej (pod)grupy zawierającej ten element.Przestrzeń liniowa lub wektorowa – w matematyce zbiór obiektów (nazywanych "wektorami"), które mogą być, nieformalnie rzecz ujmując, skalowane i dodawane. Formalnie jest to zbiór z określonymi dwoma działaniami: dodawaniem elementów tej przestrzeni (wektorów) i mnożeniem przez elementy ustalonego ciała, które związane są ze sobą poniższymi aksjomatami. Przestrzenie liniowe to podstawowy obiekt badań algebry liniowej i analizy funkcjonalnej. Znajdują zastosowanie niemal we wszystkich gałęziach matematyki, naukach ścisłych i inżynierii.

    Powyższe obserwacje można zastosować do homomorfizmu grup przy czym w tym przypadku jądro jest podgrupą w . Otrzymuje się wtedy relację równoważności (podział) w której charakterystyczną własnością jest to, iż jest jedną z jej klas równoważności; w ogólności są one postaci dla , a ponadto są równoliczne (zob. Własności, por. rysunek obok). Bezpośrednio stąd wynika, tak jak w opisanym wyżej przypadku teoriomnogościowym, że elementy odpowiadają wprost warstwom , tzn. obraz można utożsamiać ze zbiorem warstw grupy względem .

    Podział, rozbicie, partycja zbioru – w matematyce rodzina niepustych, rozłącznych podzbiorów danego zbioru dająca w sumie cały zbiór.Liczby całkowite – liczby naturalne dodatnie N + = { 1 , 2 , 3 , … } {displaystyle mathbb {N} _{+}={1,2,3,dots }} oraz liczby przeciwne do nich { − 1 , − 2 , − 3 , … } {displaystyle {-1,-2,-3,dots }} , a także liczba zero. Uogólnieniem liczb całkowitych są liczby wymierne i tym samym liczby rzeczywiste, szczególnym przypadkiem liczb całkowitych są: liczby naturalne.

    Podział grupy na warstwy względem podgrupy jest więc pojęciem węższym, a przede wszystkim algebraicznie bardziej użytecznym, od dowolnego podziału (zbioru elementów) grupy – tego rodzaju konstrukcję nazywa się kongruencją (przystawaniem). W ogólności przyjmuje się, że może być dowolną podgrupą w co sprawia, że wyznacza ona dwie, potencjalnie różne relacje równoważności; podgrupa wyznacza jeden podział wtedy i tylko wtedy, gdy jest jądrem homomorfizmu – do tego zaś potrzeba, a zarazem wystarcza, by była ona normalna (zob. osobna sekcja).

    Ciąg – w matematyce pojęcie oddające intuicję ponumerowania, czy też uporządkowania elementów zbioru. W zależności od rodzaju elementów zbioru stosuje się różne nazwy: w przypadku liczb mówi się o ciągach liczbowych, bądź bardziej precyzyjnie, np. w przypadku zbioru liczb całkowitych, rzeczywistych czy zespolonych, ciąg nazywa się wtedy odpowiednio ciągiem całkowitoliczbowym, rzeczywistym i zespolonym. Jeśli elementami zbioru są funkcje, to ciąg nazywa się ciągiem funkcyjnym. Ciąg powstały poprzez wybranie elementów innego ciągu nazywa się podciągiem.Relacja równoważności – zwrotna, symetryczna i przechodnia relacja dwuargumentowa określona na pewnym zbiorze utożsamiająca ze sobą w pewien sposób jego elementy, co ustanawia podział tego zbioru na rozłączne podzbiory według tej relacji. Podobnie każdy podział zbioru niesie ze sobą informację o pewnej relacji równoważności.


    Podstrony: 1 [2] [3] [4] [5]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Izometria (gr. isos – równy, métron – miara; także przekształcenie izometryczne, izomorfizm izometryczny) – funkcja zachowująca odległości między punktami przestrzeni metrycznej. W geometrii figury między którymi istnieje izometria (są izometryczne) nazywne są przystającymi.
    Dopełnienie zbioru – intuicyjnie, zbiór wszystkich elementów (pewnego ustalonego nadzbioru), które do danego zbioru nie należą. W niektórych pozycjach można spotkać się również z alternatywną nazwą uzupełnienie zbioru.
    Teoria mnogości lub inaczej: teoria zbiorów – dział matematyki, a zarazem logiki matematycznej zapoczątkowany przez niemieckiego matematyka Georga Cantora pod koniec XIX wieku. Teoria początkowo wzbudzała wiele kontrowersji, jednak wraz z postępem matematyki zaczęła ona pełnić rolę fundamentu, na którym opiera się większość matematycznych rozważań.
    Teoria pierścieni – dział algebry zajmujący się badaniem pierścieni. Znajduje on szerokie zastosowanie w innych obszarach matematyki, między innymi w teorii liczb i geometrii algebraicznej.
    Podgrupa – w teorii grup zbiór elementów danej grupy, który sam tworzy grupę z działaniem grupy wyjściowej; inaczej podzbiór grupy zamknięty na działanie grupowe i branie odwrotności, który zawiera jej element neutralny (zob. działanie wewnętrzne).
    Permutacja – wzajemnie jednoznaczne przekształcenie pewnego zbioru na siebie. Najczęściej termin ten oznacza funkcję na zbiorach skończonych.
    Relacja symetryczna – relacja, która jeśli zachodzi dla pary ( x , y ) {displaystyle (x,y)} , to zachodzi też dla pary ( y , x ) {displaystyle (y,x)} .

    Reklama

    Czas generowania strony: 0.079 sek.