• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Układ dynamiczny



    Podstrony: 1 [2] [3]
    Przeczytaj także...
    Przestrzeń topologiczna – podstawowe pojęcie topologii; zbiór wyposażony w strukturę (tzw. topologię) wyróżniającą pewną rodzinę jego podzbiorów (tzw. zbiory otwarte), co umożliwia określenie czy dany punkt leży „blisko”, czy „daleko” od danego podzbioru (w jego domknięciu lub poza nim) mimo braku pojęcia odległości (metryki).Teoria sterowania - jedna z gałęzi matematyki i cybernetyki, zajmuje się analizą i modelowaniem matematycznym obiektów i procesów różnej natury, zarówno fizycznych (np. chemicznych, cieplnych, mechanicznych, hydraulicznych, pneumatycznych, elektrycznych) jak i społecznych (np. ekonomia matematyczna), traktowanych jako układy dynamiczne ze sterowaniem.

    Układ dynamicznymodel matematyczny rzeczywistego zjawiska przyrody, którego ewolucja jest wyznaczona jednoznacznie przez stan początkowy; najczęściej jest opisany pewnym wektorowym równaniem różniczkowym (czyli w istocie układem równań różniczkowych zwyczajnych), zwanym równaniem stanu. Teoria układów dynamicznych stanowi ważny dział matematyki znajdujący liczne zastosowania przy opisie konkretnych zjawisk, m.in. w teorii sterowania. Układy złożone są najczęściej symulowane komputerowo.

    Równania stanu są sposobem na reprezentację modelu matematycznego układu dynamicznego (zwłaszcza układu automatycznej regulacji). Znajomość stanu układu daje bardzo wiele, ale jeszcze więcej wiemy o układzie, gdy znamy związki zmiennej stanu z innymi ważnymi zmiennymi. Dlatego w opisie układu (w jego modelu matematycznym) kluczową rolę odgrywa związek rządzący zachowaniem się zmiennej stanu czyli równania stanu. Opis układu za pomocą równań stanu nazywany jest też czasami opisem w przestrzeni stanów lub modelem zmiennych stanu.Przestrzeń probabilistyczna – struktura umożliwiająca modelowanie doświadczenia losowego poprzez wskazanie zdarzeń losowych i przypisanie im prawdopodobieństwa.

    Układ z pamięcią – układ, którego zachowanie zależy od stanu pamięci i zadanego wymuszenia.

    Spis treści

  • 1 Typy układów dynamicznych
  • 1.1 Gładkie
  • 1.2 Topologiczne
  • 1.2.1 Interpretacja
  • 1.3 Teoriomiarowe
  • 2 Zobacz też
  • 3 Przypisy


  • Podstrony: 1 [2] [3]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Modelowanie matematyczne to użycie języka matematyki do opisania zachowania jakiegoś układu (na przykład układu automatyki, biologicznego, ekonomicznego, elektrycznego, mechanicznego, termodynamicznego).
    Dyfeomorfizm – izomorfizm rozmaitości różniczkowalnych, tj. odwzorowanie bijektywne pomiędzy rozmaitościami różniczkowalnymi, które jest gładkie oraz takie, iż odwzorowanie do niego odwrotne jest również gładkie.
    Funkcja ciągła – funkcja o następującej intuicyjnej własności: „mała” zmiana argumentu niesie ze sobą „małą” zmianę wartości; lub też: wartości funkcji dla „bliskich” sobie argumentów również będą sobie „bliskie”.
    Symulacja komputerowa – symulacja z wykorzystaniem modelu matematycznego, zapisanego w postaci programu komputerowego (patrz również: Metoda numeryczna). Techniki symulacyjne są szczególnie przydatne tam, gdzie analityczne wyznaczenie rozwiązania byłoby zbyt pracochłonne, a niekiedy nawet niemożliwe – co często ma miejsce w systemach złożonych.
    Schemat Bernoulliego – proces stochastyczny składający się z ciągu niezależnych zmiennych losowych X 1 {displaystyle X_{1}} , X 2 {displaystyle X_{2}} , X 3 {displaystyle X_{3}} ,..., takich że:
    Układ statyczny (układ bezinercyjny) - w przeciwieństwie do układu dynamicznego jest układem, w którym nie można wyróżnić żadnych zmiennych stanu.
    Matematyka (z łac. mathematicus, od gr. μαθηματικός mathēmatikós, od μαθηματ-, μαθημα mathēmat-, mathēma, „nauka, lekcja, poznanie”, od μανθάνειν manthánein, „uczyć się, dowiedzieć”; prawd. spokr. z goc. mundon, „baczyć, uważać”) – nauka dostarczająca narzędzi do otrzymywania ścisłych wniosków z przyjętych założeń, zatem dotycząca prawidłowości rozumowania. Ponieważ ścisłe założenia mogą dotyczyć najróżniejszych dziedzin myśli ludzkiej, a muszą być czynione w naukach ścisłych, technice a nawet w naukach humanistycznych, zakres matematyki jest szeroki i stale się powiększa.

    Reklama

    Czas generowania strony: 0.024 sek.