• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Ułamek



    Podstrony: 1 [2] [3] [4]
    Przeczytaj także...
    Wartość bezwzględna a. moduł – dla danej liczby rzeczywistej wartość liczbowa nieuwzględniająca znaku liczby. Przykładowo Parser nie mógł rozpoznać (Nie można zapisać obrazu z wzorem w systemie plików.): 5Funkcja wymierna – funkcja będąca ilorazem funkcji wielomianowych. Iloraz wielomianów realizujących dane funkcje wielomianowe nazywa się wyrażeniem wymiernym. Można powiedzieć, że funkcje wymierne mają się tak do funkcji wielomianowych jak liczby wymierne do liczb całkowitych.

    Ułamek – wyrażenie postaci , gdzie , nazywane licznikiem, oraz , nazywane mianownikiem, są dowolnymi wyrażeniami algebraicznymi. Linię oddzielającą licznik od mianownika nazywa się kreską ułamkową.

    Ułamek dziesiętny – zapis liczby rzeczywistej w postaci ułamka, którego mianownik jest potęgą o wykładniku naturalnym liczby 10.Wielomian – wyrażenie algebraiczne złożone ze zmiennych i stałych połączonych działaniami dodawania, odejmowania, mnożenia i podnoszenia do potęgi o stałym wykładniku naturalnym.

    Wartością ułamka jest wartość jego licznika podzielona przez wartość mianownika, dlatego ułamek jest ilorazem. Z tego też powodu o mianowniku ułamka zakłada się, że jest różny od zera, bowiem iloraz jest nieokreślony.

    Liczby całkowite – liczby naturalne dodatnie N + = { 1 , 2 , 3 , … } {displaystyle mathbb {N} _{+}={1,2,3,dots }} oraz liczby przeciwne do nich { − 1 , − 2 , − 3 , … } {displaystyle {-1,-2,-3,dots }} , a także liczba zero. Uogólnieniem liczb całkowitych są liczby wymierne i tym samym liczby rzeczywiste, szczególnym przypadkiem liczb całkowitych są: liczby naturalne.Najmniejsza wspólna wielokrotność dwóch lub więcej liczb naturalnych a1, a2,... ,an - najmniejsza liczba naturalna ze zbioru wszystkich liczb naturalnych, których dzielnikiem jest każda z liczb a1,...,an, i na przykład dla liczb 15 i 240 jest to liczba 240, a dla liczb 192 i 348 - liczba 5568. Najmniejszą wspólną wielokrotność oznacza się często symbolem NWW(a1,...,an).

    Istnieją także ułamki niewłaściwe, w których licznik jest większy lub równy mianownikowi, np. lub .

    Stopień jednomianu – suma wszystkich wykładników potęg przy zmiennych niezerowego jednomianu, np. jednomian x y = x 1 y 1 {displaystyle xy=x^{1}y^{1}} jest stopnia drugiego.Dzielnik zera – element a {displaystyle a} pierścienia taki, dla którego istnieje niezerowy element b {displaystyle b} spełniający a b = 0 {displaystyle ab=0} .

    Spis treści

  • 1 Liczby wymierne
  • 1.1 Działania na ułamkach
  • 2 Wyrażenia wymierne
  • 3 Ciało ułamków
  • 3.1 Istotność założenia całkowitości pierścienia
  • 4 Typografia
  • 5 Zobacz też


  • Podstrony: 1 [2] [3] [4]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Odejmowanie – jedno z czterech podstawowych działań arytmetycznych, działanie odwrotne do dodawania. Odejmowane obiekty to odpowiednio odjemna i odjemnik, wynik zaś nazywany jest różnicą.
    Wyrażenie wymierne to wyrażenie arytmetyczne utworzone z liczb wymiernych i zmiennych o tej własności, że występują w nim wyłącznie takie operacje arytmetyczne, które po podstawieniu za zmienne liczb wymiernych dają w wyniku liczbę wymierną. Oznacza to że w wyrażeniu wymiernym występować mogą jedynie następujące działania: + , − , × , ÷ {displaystyle +,-, imes ,div } .
    Unicode – komputerowy zestaw znaków mający w zamierzeniu obejmować wszystkie pisma używane na świecie. Definiują go dwa standardy – Unicode oraz ISO 10646. Znaki obu standardów są identyczne. Standardy te różnią się w drobnych kwestiach, m.in. Unicode określa sposób składu.
    Dziedzina całkowitości – niezerowy pierścień przemienny z jedynką bez (właściwych) dzielników zera. Pierścienie te są uogólnieniem pierścienia liczb całkowitych i stanowią one naturalny kontekst do badania podzielności ze względu na dość regularne reguły przeprowadzania rachunków; najistotniejszą ich własnością jest tzw. prawo skracania.
    Mnożenie – działanie dwuargumentowe będące jednym z czterech podstawowych działań arytmetycznych. Mnożone elementy to czynniki (określane również jako mnożna i mnożnik), a jego wynik to iloczyn. Może być ono traktowane jako zapis wielokrotnego dodawania elementu do siebie.
    Ukośnik – znak pisarski mający postać ukośnej kreski (/). W zależności od tego w którą stronę pochylony jest ukośnik ma on różne nazwy:
    Wyrażenie algebraiczne – syntaktycznie wyrażenie matematyczne, złożone z jednego lub większej liczby symboli algebraicznych (tzn. stałych lub zmiennych), połączonych znakami działań (+, -, ·, /, potęgi i pierwiastka) i ewentualnie nawiasów, zgodnie z regułami notacji matematycznej.

    Reklama

    Czas generowania strony: 0.037 sek.