• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Twierdzenie Wantzela

    Przeczytaj także...
    Kwadratura koła – problem polegający na skonstruowaniu kwadratu, którego pole równe jest polu danego koła przy użyciu wyłącznie cyrkla i linijki bez podziałki. Jest to jeden z trzech wielkich problemów starożytnej matematyki greckiej (obok trysekcji kąta i podwojenia sześcianu), sformułowany przez szkołę pitagorejską.Wielomian nierozkładalny (inaczej: nieprzywiedlny) – wielomian, którego nie da się rozłożyć na iloczyn dwóch prostszych wielomianów. W przypadku wielomianów o współczynnikach rzeczywistych, wielomian jest nierozkładalny, jeśli nie da się go przedstawić jako iloczynu dwóch wielomianów rzeczywistych o stopniach niższych niż wielomian wyjściowy. Dla przykładu wielomian x 2 − 1 = ( x − 1 ) ( x + 1 ) {displaystyle x^{2}-1=(x-1)(x+1)} jest rozkładalny, a wielomian x 2 + 1 {displaystyle x^{2}+1} nie.
    Twierdzenie Gaussa-Wantzela – twierdzenie geometrii euklidesowej, które mówi, że n {displaystyle n} -kąt foremny daje się skonstruować za pomocą cyrkla i linijki, jeżeli n {displaystyle n} jest liczbą postaci 2 k ⋅ p 1 ⋅ p 2 ⋯ ⋅ p s , {displaystyle 2^{k}cdot p_{1}cdot p_{2}dots cdot p_{s},} gdzie p 1 ,   p 2 ,   … p s ,   {displaystyle p_{1}, p_{2}, dots p_{s}, } są różnymi liczbami pierwszymi Fermata. Jak dotąd znane jest tylko 5 liczb pierwszych Fermata: F 0 = 3 {displaystyle F_{0}=3} , F 1 = 5 {displaystyle F_{1}=5} , F 2 = 17 {displaystyle F_{2}=17} , F 3 = 257 {displaystyle F_{3}=257} , F 4 = 65537 {displaystyle F_{4}=65537} i nie wiadomo, czy jest ich więcej.

    Twierdzenie Wantzelatwierdzenie geometryczne, które w wielu przypadkach pozwala na rozstrzygnięcie niewykonalności pewnych konstrukcji klasycznych (tj. osiągalnych za pomocą wyimaginowanych cyrkla i liniału); w szczególności dotyczy to starożytnych problemów podwojenia sześcianu i trysekcji kąta. Ponadto możliwe jest udowodnienie za jego pomocą twierdzenia Gaussa-Wantzela, które określa warunki konstruowalności wielokąta foremnego.

    Wielokąt foremny – wielokąt, który ma wszystkie kąty wewnętrzne równe i wszystkie boki równej długości. Wszystkie wielokąty foremne są figurami wypukłymi. Wielokątem foremnym o najmniejszej możliwej liczbie boków (3) jest trójkąt równoboczny. Teoretycznie jest możliwy do skonstruowania dwukąt foremny, ale jest to przypadek zdegenerowany, wyglądałby on jak zwykły odcinek, a kąt między bokami wynosiłby 0 ∘   {displaystyle 0^{circ } } . Czworokąt foremny to inaczej kwadrat.Stopień jednomianu – suma wszystkich wykładników potęg przy zmiennych niezerowego jednomianu, np. jednomian x y = x 1 y 1 {displaystyle xy=x^{1}y^{1}} jest stopnia drugiego.

    Twierdzenie[ | edytuj kod]

    Jeżeli dana liczba rzeczywista (lub zespolona) jest konstruowalna przy pomocy cyrkla i liniału, to jest ona pierwiastkiem pewnego wielomianu nierozkładalnego o współczynnikach wymiernych, którego stopień jest potęgą naturalną liczby 2.

    Podwojenie sześcianu (inaczej nazywany problemem delijskim) – jedno z trzech, obok trysekcji kąta i kwadratury koła, wielkich problemów starożytnej matematyki greckiej, polegające na zbudowaniu sześcianu o objętości dwa razy większej niż dany.Twierdzenie to sformalizowana wypowiedź sądu, stosowana we wszystkich naukach ścisłych, składająca się z dwóch zbiorów zdań, które łączy relacja implikacji. Pierwszy zbiór zdań określa ściśle warunki dla których dane twierdzenie jest spełnione i nazywa się założeniem twierdzenia, a drugi zbiór zdań jest właściwym sądem, będącym istotną treścią wypowiadanego twierdzenia i zwany jest tezą twierdzenia.

    Zobacz też[ | edytuj kod]

  • Pierre Laurent Wantzel
  • Kwadratura koła
  • Przypisy[ | edytuj kod]

    1. Andrzej Strojnowski: Trzy słynne problemy starożytnych Greków. Wyd. 1. Wydawnictwa Szkolne i Pedagogiczne, 1995, s. 35-49. ISBN 83-02-05346-5.
    2. Feliks Klein: Elementarmathematik vom hoheren standpunkte aus erster band. Verlag von Julius Springer, 1924.
    Konstrukcje klasyczne, konstrukcje przy użyciu cyrkla i linijki – wspólna nazwa problemów polegających na wyznaczeniu odcinków lub kątów spełniających dane warunki jedynie przy pomocy cyrkla i linijki bez podziałki.Pierre Laurent Wantzel (ur. 5 czerwca 1814 r. w Paryżu, zm. 21 maja 1848 r. w Paryżu) – matematyk francuski, autor twierdzenia o konstruowalności figur płaskich za pomocą cyrkla i linijki.




    Warto wiedzieć że... beta

    Zbiór liczb rzeczywistych – uzupełnienie zbioru liczb wymiernych. Zbiór liczb rzeczywistych zawiera m.in. liczby naturalne, ujemne, całkowite, pierwiastki liczb dodatnich, wymierne, niewymierne, przestępne, itd. Z drugiej strony na liczby rzeczywiste można też patrzeć jak na szczególne przypadki liczb zespolonych.
    Trysekcja kąta – jeden z trzech (obok podwojenia sześcianu i kwadratury koła) wielkich problemów matematyki greckiej. Polega on na podziale kąta na trzy równe części jedynie przy użyciu cyrkla i liniału. W roku 1837 Pierre Wantzel udowodnił, że konstrukcja taka w ogólnym przypadku jest niewykonalna. Posługując się narzędziami teorii Galois można wykazać, że dla danego kąta φ {displaystyle varphi } kąt o mierze 1 3 φ {displaystyle { frac {1}{3}}varphi } jest konstruowalny wtedy i tylko wtedy, gdy wielomian
    Pierwiastkowanie – w matematyce operacja odwrotna względem potęgowania. Ponieważ często istnieje wiele liczb (tzw. pierwiastki algebraiczne), które podniesione do pewnej potęgi dają daną liczbę, to pierwiastkowanie nie może być w ogólności nazwane działaniem; często można jednak ograniczyć dziedzinę działania potęgowania tak, by możliwe było jego odwrócenie (dając tzw. pierwiastki arytmetyczne).
    Geometria (gr. γεωμετρία; geo – ziemia, metria – miara) – dziedzina matematyki badająca dla wybranych przekształceń ich niezmienniki, od najprostszych, takich jak odległość, pole powierzchni, miara kąta, przez bardziej zaawansowane, jak krzywizna, punkt stały, czy wymiar. W zależności od rodzaju przekształceń mówi się o różnych rodzajach geometrii.

    Reklama

    Czas generowania strony: 0.009 sek.